國立臺灣大學 109 學年度碩士班招生考試試題

423 科目: **應用電子學**

題號:423

節次:

題號:

共2页之第1页

※ 注意:請標明題號依序作答。

1. (25%) For t < 0, the circuit shown in Figure 1 is at DC steady state. Assume $V_{S1} = 27$ V, $V_{S2} = 12$ V, R = 12 200 Ω , L = 20 mH, and $C = 0.1 \mu$ F. If the switch is thrown at t = 0,

- (a) (6%) Determine if the circuit is underdamped or overdamped for t > 0.
- (b) (5%) Find the capacitor voltage v_C at t = 0 and at $t \to \infty$, respectively.
- (c) (8%) Find the capacitor voltage $v_C(t)$ at t > 0.
- (d) (6%) What is the minimum capacitor voltage $v_{C,min}$ at t > 0?

Figure 1

2. (15%) For the filter circuit shown in Figure 2:

Assume $R_1 = 4.7 \text{ k}\Omega$, $R_2 = 7.5 \text{ k}\Omega$, L = 4 mH, and C = 0.33 nF.

- (a) (5%) Determine if this circuit is a low-pass, high-pass, bandpass, or handstop filter.
- (b) (10%) Compute the frequency response function and determine $|V_0/V_1|$ at $\omega = 10^6$ rad/s.

Figure 2

- 3. (20%) A wave rectifier is shown in the circuit of Figure 3. Assume that a step-down transformer supplies 15 V rms to the rectifier.
 - (a) (6%) If the diodes have an offset voltage of 0.7 V, sketch the input source voltage $v_S(t)$ and the output voltage $v_0(t)$, and state which diodes are on and which are off in the appropriate cycles of $v_S(t)$. The frequency of the source is 60 Hz.
 - (b) (7%) If $R_L = 2.2 \text{ k}\Omega$ and a filtering capacitor has a value of 2.5 μ F, sketch the output voltage $v_o(t)$.
 - (c) (7%) Repeat (b), with the capacitance equal to $100 \mu F$.

Figure 3

節次: 7

共2頁之第2頁

4. (20%) For the given source voltages v_{s1} and v_{s2} of the circuit shown in Figure 4, please determine the output voltage v_o as a function of time and plot it. Assume ideal operational amplifiers are used. $R_{S1} = R_{S2} = R_{F1} = R_{F2} = R_o = 4 \text{ k}\Omega$ and $C = 250 \mu\text{F}$.

Figure 4

- 5. (20%) The circuit shown in Figure 5 is similar to a common collector implemented with an *npn* silicon transistor and a single DC supply $V_{CC} = 15$ V. v_S is a small sine wave signal with average value of V_{DC} . If $R_1 = 12$ k Ω , $R_2 = 8$ k Ω , $R_C = 50$ Ω , $R_E = 250$ Ω and $C_b = \infty$,
 - (a) (7%) Determine the voltage across the collector and emitter, V_{CE} at the operating point Q of the transistor.
 - **(b)**(7%) Find the voltage gain v_o/v_{in} .
 - (c) (6%) Find the current gain i_o/i_{in}

試題隨卷繳回