共 8 頁之第 1 頁 only transcribes ribosomal RNAs (A)RNA polymerase I (B) RNA polymerase II (C) RNA polymerase III (D)RNA polymerase IV (E) DNA polymerase I 2. What is Shine-Dalgarno sequence? (A) A transcription binding site in bacterial and archaeal DNA (B) A ribosomal binding site in bacterial and archaeal RNA (C) A ribosomal binding site in eukaryotic RNA (D) An RNA polymerase binding site in bacterial and archaeal DNA (E) A transcription binding site in eukaryotic RNA 3. Which is not an epigenetic regulation? (A) DNA methylation (B) Acetylation on histone (C) Methylation on histone (D) Non-coding RNA coating on chromatin (E) A change of DNA sequence 4. The 3' end of most eukaryotic mRNAs contains a _____, and the 5' end has a (A)poly(A) tail, methylated guanosine cap (B) poly(U) tail, methylated guanosine cap (C) methylated guanosine cap, poly(A) tail (D)poly(A) tail, sulfonated guanosine cap (E) methylated guanosine cap, poly(U) tail 5. What is the role of siRNA in destroying the target mRNA? (A) It stabilizes the target mRNA. (B) It activates the target mRNA's binding to proteosomes. (C) It guides the RISC that cleaves the target mRNA to that target mRNA due to its complementarity to that molecule. (D) It activates the reverse transcriptase. (E) It methylates RISC complex 6. The mechanical changes that ribosomes undergo are driven by energy from ____ (A) a chemical gradient (B) ADP hydrolysis (C) ATP hydrolysis (D) an electrochemical gradient (E) GTP hydrolysis 7. What is the name of the gene that makes the RNA thought to be responsible for the inactivation if the X chromosome in mammalian cells? (A)HOTAIR (B) JPX 見背面

國立臺灣大學 111 學年度碩士班招生考試試題

題號:405

405

國立臺灣大學 111 學年度碩士班招生考試試題 405 科目: 分子生物學(B) 題號:405 共 8 頁之第 2 頁 (C) XIST (D)PIWI (E) TNF alpha 8. What is operator? (A) The site on the DNA where the repressor binds (B) The site on the DNA where DNA polymerase binds (C) The site on the DNA where reverse transcriptase binds (D) The repressor (E) The activator Extending the DNA sequences of the end of chromosomes requires ______? (A) Endonuclease (B) Telomerase (C) Kinase (D)RNA helicase (E) RNA polymerase II 10. The RNA editing includes _____ to ____ and ____ to ____. (A) cytidine, inosine, adenosine, uridine (B) cytidine, uridine, adenosine, inosine (C) cytidine, uridine, adenosine, uridine (D) uridine, adenosine, cytidine, uridine (E) uridine, cytidine, inosine, adenosine 11. Which of the following CANNOT be detected by In Situ hybridization? (A) The localization of a specific RNA (B) The localization of a gene in cells (C) The expression of RNA (D) The expression of protein (E) Telomere 12. What is more important for UV induced lesions? (A) nucleotide excision repair (B) base excision repair (C) mismatch repair (D) nonhomologous end joining (E) homologous recombination 13. Which description is INCORRECT for cell cycle? (A) The cycle is ceased at G0 phase (B) Chromosome is condensed at M-phase (C) DNA synthesis is at S phase

接次頁

(D) Cells stop growing at G1 phase

(E) Cells have duplicated chromosomes at G2 phase

405 國立臺灣大學 111 學年度碩士班招生考試試題 科目: 分子生物學(B) 題號:405 共 8 頁之第 3 頁 節次: 14. Which statement of SARS-CoV-2 is INCORRECT? (A) It is an RNA virus with positive strand RNA genome (B) It requires RNA-dependent RNA polymerase to synthesize the virus genome (C) Spike proteins on surface is important for the infection (D) Remdesivir targets spike protein to inhibit virus replication (E) The SARS-Cov2 produces subgenomic RNAs 15. Which statement of CRISPR (clustered regularly interspaces short palindromic repeats) is INCORRECT? (A) CRISPR are DNA sequences found in prokaryotic organisms (B) Cas9 enzymes together with CRISPR sequences known as CRISPR-Cas9 can be used to edit genes (C) CRISPR are derived from DNA fragments of bacteriophage genome (D) CRISPR are DNA sequences found in mammalian cells (E) CRISPR play a key role in antiviral defense system 16. A mutation that changes a serine codon to a stop codon is called a (A) Missense mutation (B) Silence mutation (C) Nonsense mutation (D) Frameshift mutation (E) Suppressor mutation 17. Which can be determined by NGS (next generation sequencing)? 1. Genomic DNA sequence 2. Expression of non-coding RNA 3. DNA methylation 4. Histone modification 5. Chromosome conformation 6. Protein structure (A)1, 2, 3, 4(B) 1,2,3,4,5 (C) 1,2,3,4,5.6 (D) 1,2(E) 1,2,318. Which of the following can be determined by Western blotting (PAGE)? 1. Protein size 2. The amount of proteins 3. The presence of particular proteins 4. Enzyme activity 5. Interaction of protein and DNA 6. Protein structure (A)1, 2, 3, 4(B) 1,2,3,4,5 (C) 1,2,3,4,5,6 見背面

科目: 分子生物學(B)

題號:405

2

共 8 頁之第 4 頁

(D)1,2

節次:

(E) 1.2,3

- 19. Which description is CORRECT for exosomes (vesicles)?
 - 1. Membrane-bound extracellular vesicles
 - 2. Contain RNA and proteins
 - 3. Transfer molecules from one cell to another cell
 - 4. Are produced in the endosomal compartment
 - 5. Contain metabolites
 - 6. The diameter is typically below 100 nm
 - (A)1, 2, 3, 4
 - (B) 1,2,3,4,5
 - (C) 1,2,3,4,5,6
 - (D) 1,2
 - (E) 1,2.3
- 20. Most protein kinases transfer phosphate groups to which amino acid(s)?
 - 1. Glutamate
 - 2. Threonine
 - 3. Serine
 - 4. Tyrosine
 - 5. Lysine
 - 6. Arginine
 - (A)1, 2, 3, 4
 - (B)2,3,5
 - (C) 1,2,3
 - (D)2,3,4
 - (E) 1,2,6
- 21. Following a nerve impulse, what triggers the opening of plasma membrane voltage-gated Ca2+ channels?
 - (A) Membrane hyperpolarization
 - (B) Endocytosis
 - (C) Membrane depolarization
 - (D) Membrane potential becomes more negative
 - (E) Binding of glucose
- 22. Which description is INCORRECT for oncogene?
 - (A) A gene that has potential to cause cancer
 - (B) RAS and MYC are oncogenes
 - (C) BRCA1 and p53 are oncogenes
 - (D) The pro-oncogene can become an oncogene by a small modification of its original function.
 - (E) Proto-oncogenes code for proteins that help cell proliferation
- 23. Which description is CORRECT for DNA double-strand break?

接次頁

題號: 405 國立臺灣大學 111 學年度碩士班招生考試試題						
科目: 分子生物學(B)	題號: 405					
節次: 6	共 8 頁之第 5 頁					
1. It can induce non-homologous end joining repair						
2. It can induce homologous recombination						
3. It involves in VDJ recombination, the process that generates diversity on T cell receptors						
4. Massive DNA double-strand breaks can lead to cell death						
5. It induces H2AX phosphorylation						
(A) 1, 2,3,4						
(B) 2.3,5						
(C) 1,2,3						
(D) 1,3,4						
(E) 1,2,3,4,5,6						
Which matheds can analyze the interaction of DNA and mateins?						
. Which methods can analyze the interaction of DNA and proteins? 1. EMSA (electrophoretic mobility shift assay)						
2. Chromatin Immunoprecipitation						
3. Yeast two-hybrid system						
4. ChIP-seq						
5. RNA-seq						
(A) 1, 2,3,4						
(B) 2.3,5						
(C) 1,2,3						
(D) 1,2,4						
(E) 1,2,3,4,5,6						
Multi- amplified a DNIA annuage from accounts DNIA by achimograph Chain Departing (DCD), but he a	and different since of DCD					
. Mullis amplified a DNA sequence from genomic DNA by polymerase Chain Reaction (PCR), but he g	of different sizes of PCR					
products. Which of the following can improve the specificity?						
(A) Increase the melting temperate						
(B) Increase the amount of Taq polymerase						
(C) Increase the amount of dNTP						
(D) Increase the concentration of genomic DNA						
(E) Decrease the temperature of the initial denaturation step						
. George would like to clone X gene into a plasmid. The length of cDNA sequences of X gene, a prote	ein coding gene, is 3000 bp.					
X protein has amino acids, and its mass is about kDa. Note: Average molecular weight of						
daltons.						
(A)3000, 30						
(B) 1000, 110						
(C) 1000, 33						
(D) 1000, 330						
(E) 3000, 330						
. Jennifer ordered the primers for the PCR reaction and received dried oligos in the tubes. She got 30 na	`					
the forward primer, and 25 nanomoles (nmol) oligos of the reverse primer. She would like to the preparation of the state o	re stock solution in 100					
nM. How much water should be added into the tubes to make the stock solutions for these primers?						
(A)300 μl for the forward primer, 250 μl for the reverse primer						
見背面						

題號: 405 國立臺灣大學 111 學年度碩士班招生考試試題

科目: 分子生物學(B)

題號: 405

節次: 6 共 8 頁之第 6 頁

- (B) 30 µl for the forward primer, 25 µl for the reverse primer
- (C) 3 ml for the forward primer, 2.5 ml for the reverse primer
- (D)3 µl for the forward primer, 2.5 µl for the reverse primer
- (E) 30 ml for the forward primer, 25 ml for the reverse primer
- 28. Which statement of post-translational modification is INCORRECT?
 - (A) Phosphorylation is very common mechanism for regulating the activity of enzymes.
 - (B) Ubiquitylation is usually associated with protein degradation.
 - (C) SUMOylation plays a role in the major DNA repair pathways.
 - (D)O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine or threonine residues in a protein.
 - (E) Acetylation is usually on a glycine residue.
- 29. Which statement of enhancer is INCORRECT?
 - (A) A region of DNA that can be bound by activators to increase the transcription.
 - (B) It only can be found in eukaryotes.
 - (C) Enhancers can be transcribed into RNAs called enhancer RNAs.
 - (D) The active enhancers are usually in euchromatin.
 - (E) H3K27ac is usually found in an active enhancer.
- 30. What statement of autophagy is INCORRECT?
 - (A) Apoptosis is associated with the appearance of autophagosomes.
 - (B) Autophagy is the nature, conserved degradation mechanism that removes dysfunctional components.
 - (C) It goes through a lysosome-dependent mechanism.
 - (D) Nutrient starvation usually represses autophagy.
 - (E) Autophagy can contribute to cancer by promoting survival of tumor cells.
- 31. Which statement of ribosome is INCORRECT?
 - (A) Ribosomes are composed of rRNA and ribosomal proteins
 - (B) tRNA can enter the ribosome and bind to the messenger RNA via an anti-codon stem loop
 - (C) The start codon in all mRNA molecules has the sequence UAG
 - (D) The A-site binds to an aminoacyl-tRNA
 - (E) The ribosome assembles on the start codon, located within the Kozak sequence in eukaryotes.
- 32. What statement of transposon is INCORRECT?
 - (A) Transposable elements make up a large fraction of the genome in eukaryotic cells
 - (B) Retrotransposons (Class I) are transcribed from DNA to RNA, and the RNA is then reversed transcribed to DNA
 - (C) DNA transposons (Class II) function via reverse transcription
 - (D) DNA transposons encode the protein transposase
 - (E) A DNA sequence that can change its position within a genome
- 33. What statement of non-coding RNA is INCORRECT?
 - (A) miRNA, piRNA and ribosomal RNAs are non-coding RNAs
 - (B) The size of long non-coding RNA is above 200 bp
 - (C) Non-coding RNAs are not found in prokaryotes
 - (D) Genes encoding non-coding RNAs are not as conserved as coding genes
 - (E) Non-coding RNAs can regulate gene expression

接次頁

是	號:	: 405	國立臺灣大學	學 111	. 身	聖年 [度碩:	土班	召生考	試試匙	Ę.			
汞	相:	: 分子生物學(B)											題號:4	405
餌	次:	6										共 8]	真之第 7	頁
34.	(A)Pro (B)Pro (C)Mo (D)Ar	t statement of mitosis is IN ophase—chromatin fibers ometaphase—microtubes etaphase—chromosomes an aphase—the cohesins that he mitosis phase is a relative	condense into chro begin to search and e aligned along the bind sister chroma	l attach to e metaphas atids toget	kine ise pl	plate rare cl								
25	Which	n of the following is a neur	otronomittar?											
<i>.</i>		utamate	otransmitter:											
	(B) GA		-											
	, .	cetylcholine												
	, -	opamine												
	•	ll of above												
	(D) / Ki	101 400 00												
36.	What a	are minimal features of ye	ast artificial chrom	osomes (\	YAC	C)?								
		ntromere		•		,								
	2. Proi	moter												
	3. Cod	ling genes												
	4. Telo	omere												
	5. Rep	olication origin												
	(A) 1, 1 (B) 1,4 (C) 2,3 (D) 1,4 (E) 1,2	4,5 · · · · · · · · · · · · · · · · · · ·												
37.	(A)Ok (B)Pri (C)DN (D)Pro	n statement of DNA replical statement of DNA replical statements are short imase add RNA primers on NA ligase I connects Okazoliferating cell nuclear antills ap endonuclease I (FENI)	DNA fragments the total lagging strand aki fragments igen (PCNA) is a I	at bind to	np th	hat act	ts as a p		•		NA poly:	merase ir	ı eukaryot	ic
38.		statement of mitochondrio		?										
		double-membrane-bound												
	(C) Mi	itochondrial DNA is inher	ted from mother											
	(D)A7	TP is produced by oxidizing	g pyruvate and NA	NDH in mi	itoch	hondri	ria							
	(E) Or	ne mitochondrion only con	tains one copy of i	ts DNA										
30	G prot	tein-coupled receptors (GF	CRs) have	transm	nem ^l	hrane	-domei	ne W/L	ien the Cl	PCR him	ie to a li	gand it a	ctivates c	n
ンフ ・	-	ated G protein by exchang								CIX DIII	is wall	Samu, It a	ion valus al	1
		even, GTP, GDP	uic i		uio C	o prot	wiii 101	а <u></u>	•				-	
	(11)00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		見力	背	面	•							

題號: 405 國立臺灣大學 111 學年度碩士班招生考試試題

科目: 分子生物學(B)

題號: 405

節次: 6 共 8 頁之第 8 頁

- (B) Five, GTP, GDP
- (C) Seven, GDP, GTP
- (D) Five, GDP, GTP
- (E) Three, GTP, GDP
- 40. Which of the following is not involved in RNA splicing?
 - (A)U1 RNA
 - (B) Small nuclear ribonucleoproteins
 - (C) Ribozyme
 - (D) Transesterification
 - (E) Nonsense-mediated mRNA decay

試題隨卷繳回