國立臺灣大學 113 學年度碩士班招生考試試題

題號:307

科目:工程數學(C)

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:307

共 6 頁之第 1 頁

新日· 上程数字(節次: 6

複選題(100%): 共20題,每題5分,全部選項答對方能得分,錯一個選項(含) 以上或空白不予計分。考生應作答於答案卡,未作答於答案卡者,不予計分。

1. Find the dimension of the subspace H

$$\mathbf{H} = \left\{ \begin{bmatrix} a - 4b - 2c \\ 2a + 5b - 4c \\ 2c - a \\ 7b + 6c - 3a \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\}$$

- (A)0
- (B) 1
- (C)2
- (D)3
- (E) 4
- 2. Let W be the subspace spanned by the u₁ and u₂, and find the orthogonal projection of y onto W, where

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

(A)
$$\begin{bmatrix} 1/3 \\ -2 \\ -1/4 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1/4 \\ -5 \\ -1/3 \end{bmatrix}$ (C) $\begin{bmatrix} 1/7 \\ -2 \\ -3/4 \end{bmatrix}$ (D) $\begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}$ (E) $\begin{bmatrix} 1/5 \\ -3 \\ -1/4 \end{bmatrix}$

3. The mapping is defined by $T(a_0 + a_1 t + a_2 t^2) = 3a_0 + (5a_0 - 2a_1)t + (4a_1 + a_2)t^2$.

If the mapping is linear, find the matrix representation of T relative to the basis

(A)
$$\begin{bmatrix} 3 & 0 & 0 \\ 5 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 5 & 0 & 1 \\ 3 & -2 & 0 \\ 0 & 4 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 0 & -2 & 1 \end{bmatrix}$

(D)
$$\begin{vmatrix} 2 & 0 & 3 \\ 6 & -2 & 0 \\ 0 & 3 & 1 \end{vmatrix}$$
 (E) $\begin{vmatrix} 2 & 0 & 0 \\ 6 & -2 & 0 \\ 0 & 3 & 3 \end{vmatrix}$

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:307

共 6 頁之第 2 頁

節次: 6

4. Let $\beta = \{b_1, b_2\} = \{\begin{bmatrix} 7 \\ 5 \end{bmatrix}, \begin{bmatrix} -3 \\ -1 \end{bmatrix}\}$ and $C = \{c_1, c_2\} = \{\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix}\}$ be bases for

 \mathbb{R}^2 , and find the change-of-coordinates matrix from β to C.

(A)
$$\begin{bmatrix} -2 & 2 \\ 3 & 4 \end{bmatrix}$$
 (B) $\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} -3 & 8 \\ 6 & 7 \end{bmatrix}$ (D) $\begin{bmatrix} 4 & 3 \\ 7 & 2 \end{bmatrix}$ (E) $\begin{bmatrix} -3 & 1 \\ -5 & 2 \end{bmatrix}$

5. Find an invertible matrix P such that $A = PDP^{-1}$, where D is a diagonal matrix and

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}.$$

(A)
$$\begin{bmatrix} 1 & -2 & -2 \\ 1 & -1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & -2 & -2 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(D)
$$\begin{bmatrix} 1 & 2 & 4 \\ -1 & -3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 (E)
$$\begin{bmatrix} 1 & 2 & 4 \\ -1 & -4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

6. Let $Q(\mathbf{x}) = x_1^2 - 8x_1x_2 - 5x_2^2$, where x represents a variable vector in \mathbb{R}^2 . A change of variable is defined as $\mathbf{x} = P\mathbf{y}$, where P is an invertible matrix, and \mathbf{y} is a new variable vector in \mathbb{R}^2 . Find this matrix P such that $Q(\mathbf{y}) = 3y_1^2 - 7y_2^2$ after making the change of variable.

(A)
$$\begin{bmatrix} 2/\sqrt{3} & -2/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{3} \end{bmatrix}$$
 (B) $\begin{bmatrix} 2/\sqrt{3} & -2/\sqrt{5} \\ 1/\sqrt{5} & 3/\sqrt{3} \end{bmatrix}$ (C) $\begin{bmatrix} -3/\sqrt{7} & 1/\sqrt{7} \\ 1/\sqrt{7} & 3/\sqrt{7} \end{bmatrix}$

(D)
$$\begin{bmatrix} 2/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{3} & 2/\sqrt{3} \end{bmatrix}$$
 (E) $\begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$

接次頁

題號: 307 國立臺灣大學 113 學年度碩士班招生考試試題

 利目: 工程數學(C)
 超號: 307

 節次: 6
 共 6 頁之第 3 頁

7. Find the dimension of the Null space of the following matrix

- (A)0
- (B) 1
- (C)2
- (D)3
- (E)4
- 8. Given a n x n matrix P, which of following statement are false? (multiple answer)
- (A) If P is an invertible matrix, the number 0 is an eigenvalue of A.
- (B) If P is an invertible matrix, the determinant of P is not zero.
- (C) If P is triangular, then the determinant of P is the product of the entries on the diagonal of P.
- (D) If P is an invertible matrix, the dimension of Null space of P is not zero.
- (E) If P is not an invertible matrix, the columns of P form a linearly independent set.
- 9. which of following statement are true? (multiple answer)
- (A) Given an m x n matrix A, the rank of A plus dimension of Null space of A is equal to m.
- (B) The rank of matrix A is the dimension of the row space of A.
- (C) Let A is m x n and **b** is \mathbb{R}^m . Considering a least-squares problem $A\mathbf{x}=\mathbf{b}$ if the columns of A are linearly independent, the solution of this problem $\hat{\mathbf{x}}$ is given by $(A^TA)^{-1}A^T\mathbf{b}$, where A^T is the transpose of A.
- (D) An eigenvector of an n x n matrix is a nonzero vector x such that $Ax = \lambda x$ for some scalar λ .
- (E) Given four n x n matrices A, B, C, and D, the tr(ABCD) is equal to the tr(CDAB), where tr() means the trace of the matrix.

見背面

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(C)

共 6 页之第 4 页

10. The vectorization of a matrix is a linear transformation converting the matrix into a vector. For example, given a 2 x 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the vectorization of A is

$$vec(A) = \begin{bmatrix} a \\ c \\ b \\ d \end{bmatrix}$$
. Also, If A is an m × n matrix and B is a p × q matrix, then the

Kronecker product $A \otimes B$ is another pm \times qn matrix, and the A^T is the transpose of A. Now for matrices A, B, and C of dimensions $k \times 1$, $1 \times m$, and $m \times n$, which of the following is equal to the vec(ABC)?

- (A) $(A^T \otimes B)$ vec(C)
- (B) $(A \otimes B^T)$ vec(C)
- (C) $(C \otimes A^T)$ vec(B)
- (D) $(C^T \otimes A)vec(B)$
- (E) $(C^T \otimes B)$ vec(A)

接次頁

307

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(C)

避號:307

共 6 頁之第 5 頁

11. Which of the following statements are NOT true?

- (A) The function y = 0 consistently serves as a solution for a linear homogeneous ODE.
- (B) A first-order ODE can be both exact and linear separable.
- (C) The ODE $y' = e^{8x+7y}$ is not separable.
- (D) For any ODE, the sum of any two solutions constitutes a valid solution as well.
- (E) $y \frac{d^2y}{dx^2} = 1$ is a linear ODE.

12. Which of the following statements are NOT true?

- (A) The general solution to $\frac{dy}{dx} + \frac{y}{x} = x^2$ is $y = \frac{x^3}{3} + cx$. (B) The general solution to $\frac{dy}{dx} = \frac{3}{\sqrt{2x+11}}$ is $y = 3\sqrt{2x+11} + c$.
- (C) The general solution to $\frac{dy}{dx} + xy = 2x$ is $y = 2 + ce^{0.5x^2}$.
- (D) The general solution to $2x^2\frac{dy}{dx} 2xy = 3$ is $y = -\frac{3}{4x} + \frac{c}{x^2}$.
- (E) The general solution to $3x\frac{dy}{dx} + y = 24x$ is $y = 6x + cx^{-1/3}$.

13. Let $y_p = A \sin 2t + B \cos 2t$ be the steady-state solution of the ODE $y'' + 4y' + 20y = 2 \cos 2t$. Which of the following equations are correct?

- (A) 16A 8B = 0(B) 8A + 16B = 0
- (D) A = 0.05(E) B = 0.02

14. For the differential equation $y' + 7y = 10\delta(t-2)$ with the initial condition y(0) = 10, the solution includes:

- (A) $y = 7e^{-10t}$ for t < 2
- (B) $y = 10e^{-7t}$ for t < 2

- (C) $y = 20e^{-7t}$ for $t \ge 2$ (D) $y = 7e^{-10t} + 7e^{-10(t-2)}$ for $t \ge 2$ (E) $y = 10e^{-7t} + 10e^{-7(t-2)}$ for $t \ge 2$

15. Let $y = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + \cdots$ be the Taylor polynomial approximation for the initial value problem

$$y' + (\sin t)y = 0, y(0) = 1.$$

Please select the correct equations regarding a_i , $i = \{0, 1, \dots, 4\}$:

- (A) $a_0 + \ddot{a_1} + a_2 + a_3 + a_4 = 1$
- (B) $a_0 a_1 = 1$ (C) $a_2a_3 + a_4 = 0$
- (D) $a_2 = -3a_4$ (E) $a_3 = 2a_4$
- 16. Solve the initial value problem

$$y' - \frac{3y}{t+1} = (t+1)^2, y(0) = 2.$$

Please select the correct solutions:

- (A) $y(1) = \ln 2 + 2$
- (B) $y(1) = 8 \ln 2 + 8$
- (C) $y(2) = 27 \ln 3 + 54$
- (D) $y(2) = 27 \ln 3 + 72$
- (E) $y(3) = 64 \ln 4 + 192$

節次:

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:307

共 6 頁之第 6 頁

17. Consider the following second-order differential equation

$$y'' + 6y' + 34y = 2e^{-t}, y(0) = y'(0) = 0.$$

Which of the following terms are NOT included in the solution y(t)?

(A)
$$-\frac{1}{10}e^{-t}$$

(B)
$$-\frac{1}{10}e^{-3t}\cos(4t)$$

(C)
$$-\frac{1}{10}e^{-4t}\cos(3t)$$

(D)
$$-\frac{1}{20}e^{-3t}\sin(4t)$$

(A)
$$-\frac{1}{10}e^{-t}$$
 (B) $-\frac{1}{10}e^{-3t}\cos(4t)$ (C) $-\frac{1}{10}e^{-4t}\cos(3t)$ (D) $-\frac{1}{20}e^{-3t}\sin(4t)$ (E) $-\frac{1}{20}e^{-4t}\sin(3t)$

- 18. Consider the system x' = -2x + 4xy, $y' = -2y + 2x^2$. Which of the following statements are NOT true?
 - (A) The equilibrium solutions of this system include (0,0) and $(\pm 1/\sqrt{2},1/2)$.
 - (B) The system is asymptotically stable at (0,0).
 - (C) The system is asymptotically stable at $(\pm 1/\sqrt{2}, 1/2)$.
 - (D) This system can have a non-constant, periodic orbit.
 - (E) x(t) converges to 0 if x(0) = 0.1 and y(0) = 0.1.
- 19. For the differential equation $x^2y''(x) + xy'(x) 25y(x) = 0$, please find the most general solution y(x).
 - (A) $y(x) = C_1x + C_2x^{-25}$
 - (B) $y(x) = C_1 x^5 + C_2 x^{-5}$
 - (C) $y(x) = C_1 x^{25} + C_2 x^{-1}$
 - (D) $y(x) = C_1 x^{-5} + C_2 x^{-20}$
 - (E) None of above.
- 20. Compute the convolution $f(t) = 2t*(\sin t e^t)$. Which of the following terms are included in f(t)?
 - (A) 4t
- (B) $-\sin t$ (C) $2\cos t$ (D) $-e^t$
- (\mathbf{E}) 2

試題隨卷繳回