國立臺灣大學98學年度碩士班招生考試試題

題號:394 科目:工程數學(C)

頁之第 共

第 1、2 題為複選題,不倒扣但完全答對才有分數,請作答於答案卷之「選擇題作答區」,不須寫出過程, 寫出亦不計分。第 3 題到第 11 題請標明題號,作答於答案卷之「非選擇題作答區」,須寫出過程及答案。 禁止使用任何電子計算裝置

- 1. Let $L\{\}$ and $L^{-1}\{\}$ be the Laplace and the inverse Laplace transforms, respectively. Which of the following statements are correct? (5%)
 - (A) If $L\{f_1(t)\} = F_1(s)$ for $s > c_1$ and $L\{f_2(t)\} = F_2(s)$ for $s > c_2$, then for $s > c_1$ and $s > c_2$, $L\{f_1(t) + f_2(t)\} = F_1(s) + F_2(s)$.
 - (B) If $L\{f_1(t)\} = F_1(s)$ and $L\{f_2(t)\} = F_2(s)$, then $L^{-1}\{F_1(s)F_2(s)\} = f_1(t)f_2(t)$.
 - (C) If f(t) is piecewise continuous on $(0,\infty)$ and of exponential order, then $L\{f(t)\}=0$ as s approaches ∞ .
 - (D) If $f(t) = te^{-at}$, then $L\{f(t)\} = 1/(s+a)$.
 - (E) If $f(t) = \sinh(at)$, then $L\{f(t)\} = a/(s^2 a^2)$.
- 2. Find the "parabolic" equation(s) for the following linear second-order partial differential equations. (4%)

(A)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + u = 0$$
, (B) $\frac{\partial^2 u}{\partial x^2} + 6 \frac{\partial^2 u}{\partial x \partial y} + 9 \frac{\partial^2 u}{\partial y^2} = 0$, (C) $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial x \partial y}$

- (D) $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} 6 \frac{\partial u}{\partial y} = 0$, (E) $k^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, k is a real number.
- 3. Determine each of the following statements is true or false. If false, give the reason.
 - (a) If f(x) is a solution of a linear differential equation, then $\alpha f(x)$ is also a solution, where α is a constant. (5%)
 - (b) The set of functions, $f_1(x) = e^{x+5}$ and $f_2(x) = e^{x-2}$, is linearly independent. (5%)
- 4. Solve $y'' 2y' + y = e^x$. (10%)
- 5. General solution of the system, $\mathbf{x'} = \begin{bmatrix} -3 & 1 \\ 2 & -4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3t \\ e^{-t} \end{bmatrix}$, has the form

$$\mathbf{x} = c_1 \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} k_3 \\ k_4 \end{bmatrix} e^{-5t} + \begin{bmatrix} k_5 \\ k_6 \end{bmatrix} t + \begin{bmatrix} k_7 \\ k_8 \end{bmatrix} + \begin{bmatrix} k_9 \\ k_{10} \end{bmatrix} e^{-t},$$

where c_1 and c_2 are arbitrary constants. Find the values of k_6 and k_7 . (10%)

- 6. Expansion of $f(x) = x^2$, $0 < x < \ell$, in a Fourier series has the form $f(x) = a_1 + \sum_{n=1}^{\infty} \{a_2 \cos(a_3 x) + a_4 \sin(a_5 x)\}$.
 - (a) Find the expressions of a_1 and a_2 . (8 %)
 - (b) Plot graphs of f(x) v.s. x from -3ℓ to 3ℓ when f(x) is expanded as cosine series, sine series, and Fourier series. (3%)
- 7. For any matrix A, let $\mathcal{N}(A)$ denote its null space. In the real space \mathcal{R}^n , define the inner product $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \cdots + x_n y_n$ and 2-norm $\|\mathbf{x}\| = \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$ for all vectors $\mathbf{x} = [x_1 \cdots x_n]^T$ and $\mathbf{y} = [y_1 \cdots y_n]^T$. Suppose S is a subspace of \mathcal{R}^n . Let S^\perp be the orthogonal complement of S in \mathcal{R}^n with respect to the inner product $\langle \cdot, \cdot \rangle$. Consider a real 4×4 matrix A with $\mathcal{N}(A)$ spanned by the set $\{[2\ 0\ 2\ -1]^T, [1\ 2\ 0\ -1]^T, [3\ -1\ 4\ -1\]^T\}$.
 - (a) What is the rank of A? (5%)
 - (b) Find an orthonormal basis \mathcal{B} for $\mathcal{N}(A)^{\perp}$. (5%)
 - (c) With the above information, judge which one of the following three conditions can uniquely determine the matrix A, and find the unique A under that condition: Condition I: $A = A^T$ and $\det(A) = 0$; Condition II: $A = A^T$ and A has an eigenvalue 1; Condition III: $A = -A^{T}$. (10%)
 - (d) What is the least square error solution of $Ax = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ for the unique matrix A obtained in (c)? (5%)
- 8. Give an example of a linear map L from \mathcal{R}^5 to \mathcal{R}^2 whose null space equals $\{[x_1 \cdots x_5]^T \in \mathcal{R}^5 : x_1 = 3x_2, x_3 = x_4 = x_5\}$, or prove that no such linear maps exist. (4%)
- 9. Give an example of a linear operator T from \Re^2 to itself such that T has no real eigenvalues, or prove that no such operators exist, i.e., every linear operator $T \in \mathcal{L}(\mathbb{R}^2)$ has at least one real eigenvalue. (3%)
- 10. Let $\mathcal{P}_m(\mathcal{R})$ denote the inner-product space of all polynomials with real coefficients and degree at most m, with the inner product defined by $\langle p, q \rangle = \int_{a}^{b} p(x) \, q(x) \, dx$, $\forall p, q \in \mathcal{P}_{m}(\mathcal{R})$. Apply the Gram-Schmidt procedure to the basis $\{1, x, x^2\}$ to produce an orthonormal basis of $\mathcal{P}_2(\mathcal{R})$. (10%)
- 11. Let T be a linear operator from \mathcal{C}'' to itself and $\lambda \in \mathcal{C}$. Let $\mathcal{N}(T)$ denote the null space of T. Prove that for every basis of \mathcal{C}' with respect to which T has an upper-triangular matrix, λ appears on the diagonal of the matrix of T precisely $\dim \mathcal{N}((T-\lambda I)^n)$ times, or disprove it by giving a counter example. (8%)

試題隨米繳回