題號: 103

國立臺灣大學 105 學年度碩士班招生考試試題

科目: 微分方程

節次: 2

題號: 103 共 / 頁之第

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

1. (20 pts) Find the general solution (x(t), y(t)) of the system

$$\begin{cases} x'(t) + y(t) = 0, \\ y''(t) - x(t) = 0. \end{cases}$$

- 2. (20 pts) Let x(t) satisfy $x'' 4x^3 + 4x = 0$. (a) Show that $\frac{1}{2}[x'(t)]^2 x^4(t) + 2x^2(t) = \text{constant}$. (b) Assume x(0) = 1, x'(0) = 0. Find x(t).
- 3. (20 pts) Let x(t) is a C^1 function on $\mathbb R$ with x(0) = 0.
- (a) Prove that x(t) = 0 for all t if $0 \le x'(t) \le x(t)$.
- (b) Prove that the same conclusion x(t) = 0 for all t holds under the weaker assumption $-|x(t)| \le$ $x'(t) \leq |x(t)|$.
- 4. (20 pts)
- (a) Suppose x' + x = h(t), x(0) = 0. Find a function A(t) such that

$$x(t) = \int_0^t A(t-s)h(s) ds.$$

(b) Suppose y'' + y = h(t), y(0) = 0, y'(0) = 0. Find a function B(t) such that

$$y(t) = \int_0^t B(t-s)h(s) \, ds.$$

- 5. (20 pts)
- (a) Show that $\tanh'(t) = 1 \tanh^2(t)$.
- (b) Let $x(t)=p+q\tanh(\frac{t}{2})$. Find $p,q,c\in\mathbb{R}$ such that $x''+cx'+2x(x-\frac{1}{4})(1-x)=0$.

試題隨卷繳回