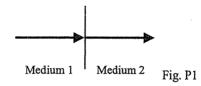
國立臺灣大學 105 學年度碩士班招生考試試題

題號: 423 科目:電磁學(C)

題號: 423


頁

共 ラ 頁之第 /

科目: 電磁學(C) 節次: 7

※ 請於**答案卷**上<u>非選擇題作答區</u>標明題號作答。計算題請詳列過程。 $\varepsilon_0=10^{-9}/(36\pi)~\mathrm{F/m}, \mu_0=4\pi\times10^{-7}~\mathrm{H/m}$

- The velocity of light in free space is 3×10⁸ m/s. Consider an electromagnetic wave which propagates from Medium 1 to Medium 2, as shown in the Fig. P1. The frequency of the wave is 3×10¹⁴ Hz in Medium 1. Both Medium 1 and Medium 2 have a permeability which is equal to that in free space (μ₀). Medium 1 has a refractive index n₁ = 1.5, and Medium 2 has a refractive index n₂ = 2.
 - (a) (3%) What is the frequency of the wave in Medium 2?
 - (b) (3%) What is the phase velocity of the wave in Medium 1?
 - (c) (3%) What is the phase velocity of the wave in Medium 2?
 - (d) (3%) What is the wavelength of the wave in Medium 1?
 - (e) (3%) What is the wavelength of the wave in Medium 2?
 - (f) (3%) Assuming normal incidence upon the interface, what is reflection coefficient Γ ?

2. Mechanical Force of Electric Origin

(a) (5%) Consider a capacitor consisting of two conducting plates in free space, separated by a distance x. The top plate has an area of A_1 , and the bottom plate has an area of A_2 . A_2 is larger than A_1 , as shown in the Fig. P2a. If a voltage V is applied across the capacitor, what is the mechanical force F_e of electric origin exerted on the top plate? What is the direction of the force? (Please ignore fringing of the electric field.)

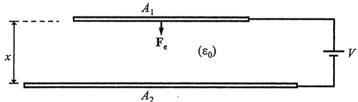


Fig. P2a

(b) (10%) Fig. P2b shows a magnetic-field electromechanical device in which the magnetic core is free to slide inside a long air-core solenoidal coil. The solenoid has length l, radius a, and number of turns per meter N, and carries a current l. The magnetic core has length b < l, radius a, and permeability $\mu >> \mu_0$, and extends a distance x into the solenoid. Find the mechanical force $\mathbf{F_e}$ of electric origin on the core for 0 < x < b and b < x < l, respectively. What is the direction of the force? (Please neglect fringing of the field.)

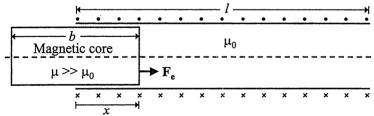
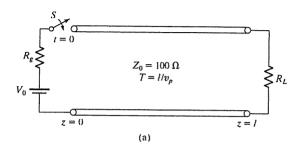
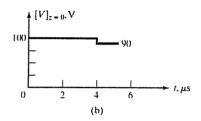


Fig. P2b

3. In the system shown in Fig. P3(a), the switch S is closed at t=0. The line voltage variations with time at positions


423 國立臺灣大學 105 學年度碩士班招生考試試題


: 電磁學(C)

題號: 423

頁之第 ≥ 頁

z=0 and z=l for the first 5 μ s are observed to be as shown in Fig. P3(b) and (c), respectively. Please find the values of V_0 , R_0 , R_L , and T.(16%)

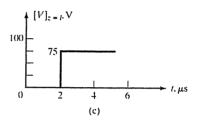


Fig. P3

- 4. (12%) In Fig. P4, a (+) wave carrying power P_0 is incident on the junction a-a' from line 1. Please find
- (a) The power reflected into line 1.
- (b) The power transmitted into line 2.
- (c) The power transmitted into line 3.

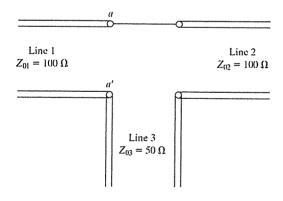


Fig. P4

- 5. (6%) Continued from Problem 1, a quarter-wave dielectric coating is usually employed to eliminate the reflection of uniform plane wave, please find
 - (a) The thickness of the dielectric coating.
 - (b) The permittivity of the dielectric coating.
- 6. We want to transmit satellite signals of 300 Watt power using an antenna with a gain of 35 dB at 10.7 GHz over a distance of 7,500 km. What is the power received by another antenna with a gain of 30 dB? (8 %)

接次頁

題號: 423

國立臺灣大學 105 學年度碩士班招生考試試題

科目:電磁學(C)

節次: 7

題號: 423

共 3 頁之第 3 頁

7. We have joined two rectangular waveguides together end-to-end with identical dimensions, where a = 2b. If one waveguide is filled with air, and the other one is filled with a lossless dielectric characterized by ϵ_R .

- (a) We want to ensure that single-mode operation can be simultaneously existed in *both* waveguides at some frequency. What is the maximum allowable value of ϵ_R ? (8 %)
- (b) Following (a), what is the frequency range? Express your answer in terms of ϵ_R , dimension, or other known constants as needed. (6 %)
- 8. An optical fiber is 10 km long with an attenuation of 0.2 dB/km and a diameter of 50 μ m. Assume the fiber has $n_1 = 1.54$, $n_2 = 1.53$, and the dispersion coefficient is 18 ps/km-nm at wavelength of 1.55 μ m.
 - (a) What is the maximum angle at which rays will enter the fiber and be trapped? (3 %)
 - (b) What is the percentage of input power received? (3 %)
 - (c) A Gaussian pulse envelope of half-width 5 ps propagates in this fiber at $\lambda = 1.55 \,\mu\text{m}$. What is the half-width pulse envelope after 10 km? (5 %)

試題隨卷繳回