科目:分子生物學(B)

節次: 6

題號:465 共 6 頁之第 1 頁

共40題,全部為單選題,考生應作答於答案卡

- 1. An open reading frame (ORF) that is not likely to encode a functional polypeptide usually has the following feature not found in other ORF.
 - A. It has many termination codons.
 - B. It has many coding triplets before a termination codon.
 - C. It has an initiation codon.
 - D. It encodes functional polypeptides in the other two reading frames of the same sequence.
 - E. It is never transcribed.
- 2. A class of mutations that results in multiple contiguous amino acid changes in a protein is probably caused by the following type of mutation.
 - A. frameshift.
 - B. transversion.
 - C. transition.
 - D. RNAi.
 - E. base analogue.
- 3. The condensed state of nucleic acids in cells results from its binding to what type of proteins?
 - A. amphipathic
 - B. acidic
 - C. basic
 - D. hydrophilic
- 4. Regions flanking centromeres in chromosomes are rich in:
 - A. unique sequence DNA and euchromatin
 - B. unique sequence DNA and heterochromatin
 - C. satellite DNA and euchromatin
 - D. satellite DNA and heterochromatin
- 5. Which of the following is a false statement about telomerase?
 - A. dCTP and dATP are not substrates of telomerase.
 - B. The RNA component of telomerase serves as the template for telomere synthesis.
 - C. Telomerase uses the 5'-end of the telomere to prime telomere synthesis
 - D. The protein component of telomerase is a reverse transcriptase.
- 6. The transient covalent modification of the N-terminal tails of the core histone proteins:
 - A. facilitates the process of transcription and DNA replication
 - B. disrupts nucleosome/DNA interaction by the introduction of a net positive charge on the nucleosomes.
 - C. is specific for the R groups of valine, isoleucine and alanine.
 - D. exclusively involve the histone tails of H2A and H2B.
 - E. answers A and B are correct
- 7. Which of the following features are common to essentially all (prokaryotic, eukaryotic, viral) replication origins?
 - A. Origin sequences have inverted repeats that form stable secondary structures for assembly of the replication apparatus.
 - B. Origins are unique DNA segments that often contain multiple short repeated sequences involved in binding to replication proteins.
 - C. DNA polymerase is able to recognize promoter-like sequences at the replication origins.
 - D. The origin-flanking sequences are G-C rich to stabilize the DNA-protein initiation complex.
- 8. At normal growth temperature (37°C), how long does it take for complete replication of the *E. coli* chromosome?

科目:分子生物學(B)

題號:465

共 6 頁之第 2 頁

節次: 6

A. 20 minutes

- B. 40 minutes
- C. 60 minutes
- D. 90 minutes
- 9. Transfer of the F factor from one bacterial cell to another occurs as:
 - A. Single-stranded DNA generated by rolling circle replication in the donor cell.
 - B. Single-stranded DNA generated by unidirectional replication in the donor cell.
 - C. Double-stranded DNA generated by rolling circle replication in the donor cell.
 - D. Double-stranded DNA generated by unidirectional replication in the donor cell.
- 10. In September 2016, a baby was born with the DNA of two women (the mother and a donor) and a man (the father). The baby was conceived through the technique of so called "three-parent in vitro fertilization". Which of the following statement is correct:
 - A. The three parents provided DNA from nucleus, peroxisome and mitochondrion, respectively.
 - B. The nucleus was removed from the egg cell of a donor and the de-nucleated egg cell was then injected with the nuclear DNA from the mother's egg cell.
 - C. The technique was used because the mother has a genetic disease due to a mutation in the nuclear DNA.
 - D. The sperm provided the mitochondrial DNA.
- 11. What two proteins are required for unwinding duplex DNA and stabilizing the resulting single strands?
 - A. DNA primase and helicase
 - B. DNA primase and replicase
 - C. Replicase and single-stranded DNA binding protein
 - D. Helicase and single-stranded DNA binding protein
- 12. The E. coli chromosome replicates bidirectionally, this means there.
 - A. are two replication origins on the bacterial chromosome.
 - B. are two daughter duplexes formed after replication of the DNA.
 - C. are two replication forks established that move in opposite directions.
 - D. is replication of both a leading strand and a lagging strand.
- 13. An *E. coli* mutation that greatly reduces the 3'-5' exonuclease activity of DNA polymerase I would result in:
 - A. cell death
 - B. very little or no effect on cell viability
 - C. a significantly decreased mutation rate
 - D. a significantly increased mutation rate
- 14. What type of DNA structure is needed for initiation of homologous DNA recombination?
 - A. broken, blunt-ended DNA
 - B. a free 5' single-stranded region
 - C. a free 3' single-stranded region
 - D. any of the above
- 15. The photoreactivation repair system in E. coli acts specifically on:
 - A. pyrimidine dimers
 - B. double-strand breaks
 - C. abasic sites
 - D. mispaired DNA sites
- 16. Homologous recombination between two identical direct repeat elements present in a genome results in:
 - A. a duplication of the DNA between the repeats
 - B. an inversion of the DNA between the elements

科目:分子生物學(B)

節次: 6

題號:465 共 6 頁之第 3 頁

C. deletion and circularization of the DNA between the repeats

- D. none of the above
- 17. Genetic recombination during meiosis is initiated by a
 - A. pair of single-stranded nicks at identical sites, one within each parental duplex.
 - B. single-stranded nick in only one of the two parental duplexes.
 - C. pair of single-stranded nicks at different sites, one within each parental duplex.
 - D. double-stranded break in only one of the two parental duplexes.
- 18. Considering the polymerase chain reaction, what kind of bonds holds the primer to the template DNA?
 - A. covalent
 - B. ionic
 - C. Van der Waals
 - D. hydrogen
 - E. hydrophobic
- 19. The "2016 Nobel Prize in Physiology or Medicine" was awarded to Dr. Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy". Which of the following statement about autophagy is incorrect?
 - A. A mitochondrion was observed being engulfed by a cup-shaped double-membrane. This mitochondrion might be going through the process of autophagy.
 - B. In autophagy, the engulfed organelles will be sent to the 26S proteosome for degradation.
 - C. Autophagy mediates the digestion and recycling of non-essential parts of the cell during starvation.
 - D. Autophagy is capable of clearing invading microorganisms and toxic protein aggregates.
- 20. CRISPR/Cas9 is the most talked about technique in the past few years for targeted genome editing. Which of the following statement about CRISPR/Cas9 is incorrect?
 - A. Cas9 is an endonuclease that cut double-stranded RNA.
 - B. An RNA molecule guides Cas9 to the target.
 - C. The system has been shown to work in many organisms including fish, yeast and plants.
 - D. The system was originally discovered as part of adaptive immunity in bacteria.
- 21. Which of the following statements about RNA polymerase is NOT correct?
 - A. DNA moves through a channel in RNA polymerase and makes a sharp turn at the active site
 - B. Sigma factor is required for both the initiation and elongation steps of RNA synthesis
 - C. Sigma factor changes the DNA-binding properties of RNA polymerase so that its affinity for general DNA is reduced and its affinity for promoter is increased
 - D. Core RNA polymerase of bacteria can synthesize RNA from a DNA template but cannot initiate transcription at the correct site
- 22. All of the following elements can function as prokaryotic promoter except
 - A. A TATA box centered at \sim -10
 - B. A purine at the start point
 - C. CpG islands
 - D. A hexamer with a sequence close to TTGACA centered at ~-35
- 23. Which of the following statements about Eukaryotic RNA polymerases and promoters is NOT correct?
 - A. mRNA is synthesized by RNA polymerase II in the nucleoplasm
 - B. rRNA is synthesized by RNA polymerase I in the nucleolus
 - C. Promoter is always located in the upstream of the transcription start point
 - D. Chromatin must be opened before RNA polymerase can bind the promoter
- 24. Which of the following is not used in the electrophoretic mobility shift assay (EMSA)?
 - A. A radiolabeled DNA fragment
 - B. A polyacrylamide gel

科目:分子生物學(B)

題號:465 4 6 百>第 1 百

共 6 頁之第 4 頁

節次: 6

- C. A DNA binding protein
- D. DNase I
- 25. Which of the following is not a structural motif found in a DNA-binding domain?
 - A. Random-coil acidic domain
 - B. Zinc-finger
 - C. Helix-loop-helix
 - D. Homeodomain
- 26. Splice sites in pre-mRNA are marked by two universally conserved sequences contained
 - A. In the middle of the intron.
 - B. At the ends of the exons.
 - C. At the ends of the introns.
 - D. None of the above
- 27. Which of the following RNA functions in the removal of introns from pre-RNAs.
 - A. snRNA (small nuclear RNA)
 - B. snoRNA (small nucleolar RNA)
 - C. siRNA (small interfering RNA)
 - D. miRNA (micro RNA)
- 28. Indicate the order in which the following steps occur in the production of a mature mRNA.
 - A. Initiation of transcription, splicing, addition of 5' cap, addition of poly(A) tail, transport to cytoplasm
 - B. Initiation of transcription, addition of 5' cap, splicing, transport to cytoplasm, addition of poly(A) tail,
 - C. Initiation of transcription, addition of poly(A) tail, addition of 5' cap, splicing, transport to cytoplasm
 - D. Initiation of transcription, addition of 5' cap, addition of poly(A) tail, splicing, transport to cytoplasm
- 29. Comparing mRNA molecules from human and *Escherichia coli* cells, which of the following is typically NOT true?
 - A. A human mRNA has a special 5' cap, while a bacterial mRNA does not.
 - B. A human mRNA has a poly-A tail, while a bacterial mRNA does not.
 - C. A human mRNA undergoes alternative splicing, while a bacterial mRNA does not.
 - D. A human mRNA contains noncoding sequences, while a bacterial mRNA does not.
 - E. A typical human mRNA encodes one protein, while many bacterial mRNAs encode several different proteins.
- 30. In the following schematic graph of a hypothetical set of RNA-seq data, the number of reads is plotted for a region of chromosome containing two genes, from samples obtained from two different tissues. Which gene (X or Y) do you think is more likely a "housekeeping" gene? Which region (1 or 2) within gene Y most likely corresponds to an exon?

Position on chromosome

科目:分子生物學(B)

節次: 6

共 6 頁之第 5 頁

- A. Gene X; region 1
- B. Gene X; region 2
- C. Both genes; region 1
- D. Gene Y; region 1
- E. Gene Y; region 2
- 31. Which of the following statements about splicing is correct?
 - A. All of the splicing require enzymatic activity provided by proteins
 - B. Splicing can occur during or after transcription
 - C. Splicing reactions occur only in cis between splice sites on the same molecular of RNA
 - D. Production of rRNA requires cutting and rejoining in separate reactions
- 32. Which of the following is not a feature of ribosomes?
 - A. Cytoplasmic and organellar ribosomes of eukaryotes are identical.
 - B. All ribosomes have one large subunit and one small subunit.
 - C. All ribosomes are composed of RNA and protein.
 - D. Ribosomes interact with both mRNA and tRNA.
- 33. The function of bacterial EF-Ts is to
 - A. Convert EF-Tu•GDP to an active form.
 - B. Allow binding of aminoacyl-tRNAs to the A site of the ribosome.
 - C. Convert GTP to GDP.
 - D. Move the peptidyl-tRNA from the A site to the P site.
 - E. Deacylate tRNAs.
- 34. The antibiotic puromycin inhibits protein synthesis by
 - A. Preventing formation of the peptide bond due to its similarity to peptidyl transferase.
 - B. Blocking the translocation of the ribosome.
 - C. Temporarily binding to the A site and taking the polypeptide from the ribosome.
 - D. Inhibiting the binding of EF-Tu to aminoacyl-tRNAs.
 - E. Preventing the association of the large and small ribosomal subunits.
- 35. Different aminoacyl-tRNA synthetases
 - A. may bind the same amino acid.
 - B. may bind the same tRNA.
 - C. do not appear to recognize the same features of tRNAs.
 - D. will always recognize both the acceptor stem and anticodon sequences of tRNAs.
 - E. will always recognize the complete tRNA anticodon sequence.
- 36. Which of the following statements about genetic code is NOT correct
 - A. Slippery sequences allow more than polypeptide to be coded by a single gene.
 - B. A nonsense suppressor mutation in a tRNA gene allows a ribosome to read through a mutant stop codon in the middle of a coding sequence.
 - C. Having several codons that differ in the third nucleotide position minimizes the functional effects of mutations.
 - D. Due to wobble pairing, a single tRNA can recognize several codons.
 - E. None of the above.
- 37. The covalent modifications of DNA that are responsible for establishing and/or maintaining epigenetic inheritance patterns include all of the following except:
 - A. The association with members of the Pc-G family of proteins.
 - B. The methylation of histone H3.
 - C. The acetylation of histones H3 and H4.
 - D. The methylation of cytosine.

題號: 465

國立臺灣大學106學年度碩士班招生考試試題

科目:分子生物學(B)

題號:465

節次: 6

頁之第 6 6

- All of the above modifications establish or maintain epigenetic inheritance patterns.
- To prevent spurious transcription from a gene, acetylation of histones—which is carried out by histone 38. acetyl transferases ahead of a moving RNA polymerase II—is quickly reversed by histone deacetylases and histone methyl transferases in the wake of the polymerase, leaving a trail of specific methylated histones. Which of the following curves do you think better represents the distribution of this specific histone methylation mark with respect to a gene?

Genomic location

- Which of the following classes of noncoding RNAs is NOT directly involved in RNA interference? 39.
 - A. miRNA
 - B. snoRNA
 - C. piRNA
 - D. siRNA
- What is the function of RNA-dependent RNA polymerases in RNAi? 40.
 - A. They prevent the spread of the RNAi pathway by replicating the target RNAs.
 - B. They help amplify the RNAi response by replicating the target RNAs.
 - C. They produce additional copies of the siRNAs to ensure that the RNAi response is sustained and spread.
 - D. They are viral proteins that prevent the spread of RNAi by preferentially replicating siRNA sponges.

試題隨卷繳回