題號: 409

國立臺灣大學 107 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:409

共4頁之第1頁

節次: 6

*各題答案應作答於答案卡上,否則不予計分。

- *每題有一個或一個以上正確選項,完整答對(無任何選項答錯),該題得滿分。
- *每題未作答或答錯(應選而未選或不應選而選),該題以 0 分計算。
- 1. (5%) Which of the following are the possible solutions for the differential equation below? y"+by'+cy=0 where b and c are constant, respectively.
 - (A) $y=5e^x+3e^{4x}$
 - (B) $y=3x+e^{x}$
 - (C) $y=5e^{x}(\cos 3x + 2\sin 3x)$
 - (D) $y=e^{-x} + xe^{-x}$
 - (E) $y=1+2e^x$
- 2. (5%) Solve the differential equation $y^{(4)} 13y'' + 36y = 0$. Which of the following are the possible solutions?

(A)
$$y=c_1e^{3x}+c_2xe^{-3x}+c_3e^{2x}+c_4xe^{-2x}$$

(B)
$$y=c_1e^x+c_2e^{-x}+c_3e^{3x}+c_4e^{-3x}$$

(C)
$$y=c_1e^{3x}+c_2e^{-3x}+c_3e^{2x}+c_4e^{-2x}$$

(D)
$$y=c_1xe^x + c_2e^{-x} + c_3xe^{3x} + c_4e^{-3x}$$

(E)
$$y=c_1e^{3x}+c_2e^{-3x}+c_3xe^{4x}+c_4e^{-4x}$$

3. (5%) Which of the following are the possible integrating factors for the differential equation

$$\left(\frac{\sqrt{x^2 + 2y^2}}{\frac{x}{2}} + \frac{3}{y}\right) dy + \left(\frac{\sqrt{x^2 + 2y^2}}{y} + \frac{3}{x}\right) dx = 0?$$

- (A) $x^2 + y^2$
- (B) x^2
- (C) y^2
- $(D)\frac{x}{v}$
- (E) xy
- 4. (5%) The solution for the differential equation $y'' 6y' + 9y = 18x^{-3}e^{3x}$ is $y = e^{3x}(a + bx + cx^{-1})$, where a, b, and c are constant, respectively. Find the value of c.
 - (A)9
 - (B) 10
 - (C) 11
 - (D)-10
 - **(E)** -9
- 5. (5%) Find the Fourier series of the function $f(x) = \begin{cases} -k, -\pi < x < 0 \\ k, 0 < x < \pi \end{cases}$, and use the result to derive the value

題號: 409 國立臺灣大學 107 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:409

節次: 6

共 4 頁之第 2 頁

$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}...$$

- (A) Fourier series : $\sum_{n=2.4.6}^{\infty} \frac{8k}{n\pi} \sin(nx)$, summation: $\frac{\pi}{8}$
- (B) Fourier series : $\sum_{n=1,3,5}^{\infty} \frac{4k}{n\pi} \sin(nx)$, summation: $\frac{\pi}{8}$
- (C) Fourier series : $\sum_{n=1,3,5}^{\infty} \frac{8k}{n\pi} \sin(nx)$, summation: $\frac{\pi}{4}$
- (D) Fourier series: $\sum_{n=1,3,5}^{\infty} \frac{4k}{n\pi} \sin(nx)$, summation: $\frac{\pi}{4}$
- (E) Fourier series : $\sum_{n=2,4,6}^{\infty} \frac{4k}{n\pi} \sin(nx)$, summation: $\frac{\pi}{4}$
- 6. (5%) Find the Laplace transform Y(s) with respect to the differential equation $y' + 7y + 12 \int_0^x y dx = u(t-3)$,

where
$$y(0) = 1$$
 and $u(t) = \begin{cases} 0 & t < 0 \\ 3 & t \ge 0 \end{cases}$.

(A)
$$\frac{4}{s+3} + \frac{-2}{s+4} + (\frac{1}{s+3} + \frac{-1}{s+4})e^{-3s}$$

(B)
$$\frac{2}{s+3} + \frac{-4}{s+4} + (\frac{-1}{s+3} + \frac{1}{s+4})e^{-3s}$$

(C)
$$\frac{-3}{s+3} + \frac{4}{s+4} + (\frac{1}{s+3} + \frac{-1}{s+4})e^{-3s}$$

(D)
$$\frac{-3}{s+4} + \frac{4}{s+3} + (\frac{-1}{s+4} + \frac{1}{s+3})e^{-3s}$$

(E)
$$\frac{4}{s+4} + \frac{-3}{s+3} + (\frac{1}{s+4} + \frac{-1}{s+3})e^{-3s}$$

- 7. (5%) Solve the differential equation $5x^2y^* + 46.25y = 0$. Which of the following are the possible solutions?
 - (A) $x^{\frac{1}{2}}[c_1\cos(4\ln x) + c_2\sin(4\ln x)]$
 - (B) $x^{\frac{1}{2}}[c_1\cos(3\ln x) + c_2\sin(3\ln x)]$
 - (C) $x^{\frac{1}{3}}[c_1\cos(3\ln x) + c_2\sin(3\ln x)]$
 - (D) $x^{\frac{1}{3}}[c_1\cos(4\ln x) + c_2\sin(4\ln x)]$
 - (E) $x^{\frac{1}{2}}[c_1\cos(3\ln x) + c_2\sin(4\ln x)]$
- 8. (5%) Solve the general solution of the homogeneous system $\frac{dx}{dt} = 3x + 2y$; $\frac{dx}{dt} = x + 2y$. Which of the following are the possible solutions?

(A)
$$x=c_1e^{-t}+3c_2e^{4t}$$
; $y=-c_1e^{-t}+c_2e^{4t}$

(B)
$$x=c_1e^t+3c_2e^{-4t}$$
; $y=-c_1e^t+c_2e^{-4t}$

(C)
$$x=c_1e^{-t}+2c_2e^{4t}$$
; $y=-c_1e^{-t}+c_2e^{4t}$

409

節次:

國立臺灣大學 107 學年度碩士班招生考試試題

工程數學(C)

6

共 4 頁之第 3 頁

題號:409

(D) $x=c_1e^t+2c_2e^{4t}$; $y=-c_1e^t+c_2e^{4t}$

- (E) none of the above
- 9. (5%) Evaluate inverse Laplace transform $\frac{s/2+7/3}{s^2+4s+6}$. Which of the following are the possible solutions?

(A)
$$\frac{1}{2}e^{-2t}\cos(\sqrt{2} t) + \frac{2\sqrt{2}}{3}e^{-2t}\sin(\sqrt{2} t)$$

(B)
$$\frac{1}{3}e^{-3t}\cos(\sqrt{2}t) + \frac{2\sqrt{2}}{3}e^{-2t}\sin(\sqrt{2}t)$$

(C)
$$\frac{1}{2}e^{-3t}\cos(\sqrt{2}t) + \frac{2\sqrt{2}}{5}e^{-3t}\sin(\sqrt{2}t)$$

(D)
$$\frac{1}{3}e^{-2t}\cos(\sqrt{2}t) + \frac{2\sqrt{2}}{5}e^{-2t}\sin(\sqrt{2}t)$$

- (E) none of the above
- 10. (5%) Which the following are the correct description for the equation $4\frac{\partial^2 u}{\partial r^2} = 3\frac{\partial^2 u}{\partial v^2}$?
 - (A) The equation is elliptic.
 - (B) The equation is parabolic.
 - (C) The equation is hyperbolic.
 - (D) The equation is nonhomogeneous.
 - (E) The equation is homogeneous.

$$x_1 - 2x_2 + 4x_3 = 5$$

11. (5%) Consider the following system of equations: $2x_1 - 3x_2 + x_3 = 3$. The above system of linear $3x_1 - 4x_2 - 2x_3 = 1$

equations is:

- (A) Inconsistent
- (B) Consistent with a unique solution
- (C) Consistent with infinitely many solutions
- (D) None of the above
- 12. (5%) For matrices A, B, C, D, which of the following statements are true?
 - $(A)AB \neq BA$
 - (B) AB=0 implies that A=0 or B=0 or BA=0
 - (C) AC=AD implies C=D
 - (D)AI=IA, where I is identity matrix
- 13. (5%) Find all the eigenvalues of $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$
 - (A) 1
 - (B)2
 - (C)3
 - (D) 4
 - (E) 5
- 14. (5%) Suppose u=(1, 2, 3, 4) and v=(6, 5, -8, k). Find such k that makes u and v orthogonal.
 - (A) 1
 - (B)2
 - (C)4

題號: 409

國立臺灣大學 107 學年度碩士班招生考試試題

科目: 工程數學(C)

題號:409

節次: 6

共 4 頁之第 4 頁

- (D)8
- (E) -4
- 15. (5%) For matrix $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 5 \end{bmatrix}$, which of the following statements are true?
 - (A) rank (A) = 3
 - (B) $\det(A) = 0$
 - (C) A has an inverse.
 - (D) A is singular.
 - (E) The rows of A are linearly independent.
- 16. (5%) Which of the following lists of vectors in R³ are linearly dependent?
 - (A) u=(1, 2, 5), v=(2, 5, 1), w=(5, 2, 1)
 - (B) u=(1, 2, 5), v=(1, 5, 6), w=(0, 0, 0)
 - (C) u=(2,-4,8), v=(3,-6,12), w=(1,2,6)
 - (D) u=(1, 2, 3), v=(4, 5, 6), w=(1, 4, 6), x=(3, 4, 6)
- 17. (5%) Which of the following statements are true?
 - (A) The mapping F: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y)=(xy, x) is linear.
 - (B) The mapping F: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y)=(x+y, x) is linear.
 - (C) A mapping $F: V \rightarrow U$ has an inverse if and only if F is one-to-one and onto.
 - (D) A mapping F: V -> U is said to be onto if different elements of A have distinct images.
 - (E) Let $F: V \to U$ be a linear mapping. The kernel of F is a subspace of U and the image of F is a subspace of V.

18. (5%) Let
$$v1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $v1 = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$. Span $\{v1, v2, v3\}$ is

- (A) a point
- (B) a line
- (C) a plane
- $(D)R^3$
- 19. (5%) Which of the following statement is NOT true?
 - (A) P is orthogonal if and only if P^T is orthogonal.
 - (B) If P is orthogonal, then P-1 is orthogonal.
 - (C) If P and Q are orthogonal, then PQ is orthogonal.
 - (D) If P is orthogonal, det(P)=0.
 - (E) P is an orthogonal matrix. ||Pu|| = ||u|| for every $u \in V$.
- 20. (5%) Let $A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Which of the following statements are true?
 - $(A) \det(AB) = -21$
 - (B) $\det(A+B) = -4$
 - (C) B is diagonalizable.
 - (D) A is positive definite.
 - (E) A is invertible.

試題隨卷繳回