題號: 422

國立臺灣大學 108 學年度碩士班招生考試試題

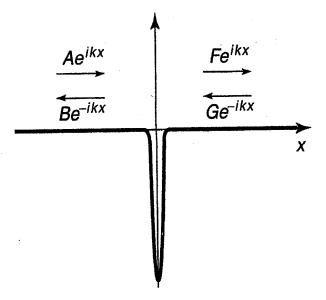
科目: 近代物理(含半導體物理)

題號: 422

節次: 6

共2頁之第1頁

1. Quantum theory of atoms (22%)


- (a) (4%) What is the electron configuration of Ge? (for example 1s²2s²2p⁵ for F atoms).
- (b) (4%) For an electron in the valence band (outmost shell) of Ge crystals, what are the possible sets of quantum numbers? Neglect the hybridization of s and p orbitals. Treat them as discrete orbitals. Note that for each set, you MUST write down its four quantum numbers (n, l, m_l, m_s) .
- (c) (14%) Considering spin-orbit coupling for an electron of the outmost shell in Ge by treating a Ge atom like hydrogen atom, please calculate the following parameters: radius ($r=n^2a_0$, $a_0=0.529$ Å), electron velocity ($m=0.1m_0$), frequency, magnetic field ($B=\frac{\mu_0fe}{2r}$, $\mu_0=4\pi\times10^{-7}$), and the energy difference ($\Delta E=\frac{e\hbar B}{m}$) of the splitting states in terms of eV and its equivalent temperature.

2. Quantum Mechanics (28%)

A particle of mass m is in a delta potential quantum well of

$$U(x) = -A\delta(x)$$

(a) (14%) If E < 0, it is called "bound states" case. Wave function can be expressed as $\sqrt{B}e^{-Bx}$. Find B and the associated energy level. (Hint: 1. $\psi(x)$ is continuous and 2. $\frac{d\psi(x)}{dx}$ is continuous except at x = 0).

(b) (14%) If E > 0, it is called "scattering states" case. See Fig. 1 for scattering details. Assume an incident electron from the left (i.e. G = 0), what are the reflection coefficient ($R = \frac{|B|^2}{|A|^2}$), transmission

coefficient $(T = \frac{|F|^2}{|A|^2})$? Please show that R + T = 1. Express R and Fig. 1 An electron incident on a delta potential. T in terms of m, A, \hbar , E,

3. Semiconductor physics and devices (50%)

For a n-MOSFET (Fig. 2), if N_D in the n-type source/drain region is 5×10^{19} cm⁻³ and N_A in the p-type substrate is 10^{17} cm⁻³. $N_C = 2.8 \times 10^{19}$ cm⁻³ and $N_V = 1 \times 10^{19}$ cm⁻³.

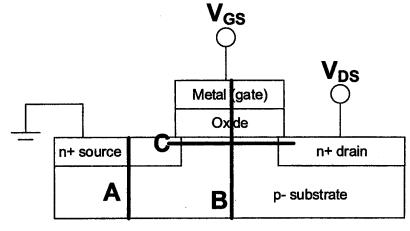


Fig. 2 A n-type Si MOSFET device 見背面

題號: 422 國立臺灣大學 108 學年度碩士班招生考試試題

科目: 近代物理(含半導體物理)

題號:422

節次: 6

共2頁之第2頁

(a) (4%) Calculate $E_F - E_V$ in the p-type Si substrate.

- (b) (6%) Please draw the band diagram along line A by labeling all energy levels (and its relative positions in the source and substrate regions. You can assume $E_F \sim E_C$ in the n+ source region.
- (c) (10%) Please qualitatively draw the band diagram along line B. Assume $V_{GS}=2$ V, $V_{FB}=0$ V, and the system is in strong inversion. Label the energy levels of E_{FM} (Fermi level in metal), E_C , E_i , E_{FS} (Fermi level in semiconductor), and E_V . Note that you also need to mark the energy differences between (i) E_{FS} and E_{FM} , (ii) E_{FS} and E_V in the bulk p-Si, and (iii) E_{FS} and E_C at the oxide/p-Si interface.
- (d) (10%) Please qualitatively draw the band diagram along line C (in the Si region and right at the oxide/Si interface). Following (c) by assuming the system is in strong inversion and $V_{DS} = 2$ V. Label the energy levels of E_C , and E_V , and Fermi levels in the source (E_{FS}) , drain (E_{FD}) , and channel (E_{FC}) . You need to mark the energy differences between (i) E_{FS} and E_{FD} , (ii) E_{FC} and E_C at the oxide/p-Si interface.
- (e) (10%) Considering the following parameters: work function of metal gate, substrate doping level, and oxide thickness. Please describe how we could vary the above three parameters to reduce the threshold voltage.
- (f) (10%) Considering the following parameters: gate length, oxide capacitance, and mobility. Please describe how we could adjust the above three parameters to enhance the device performance in MOSFETs (i.e. higher current density).

試題隨卷繳回