國立臺灣大學110學年度碩士班招生考試試題

題號: 405 國立臺灣/ 科目: 電子學(C)

村日·电丁字(

題號:405 共 2 頁之第 1 頁

節次: 8

- 1. The closed-loop circuit in Fig. 1 can be used as an oscillator.
 - (a) Please derive the condition to satisfy the Barkhausen criterion. What is the oscillation frequency? [10%]
 - (b) Given that $R=10~k\Omega$, how do you choose R_F and C to have an oscillation frequency of 100~kHz? [10%]

Fig. 1

- 2. For a MOSFET, the parameters are given as $\mu_n C_{ox}(W/L) = 8 \, mA/V^2$, $V_t = 1 \, V$ and $V_A = 20 \, V$. If the MOSFET is operated in saturation with a dc current of I, the transconductance is identical to that of a BJT operating in active mode with a dc current of 0.1I.
 - (a) Find the value of I. [5%]
 - (b) What is the small-signal output resistance (r_o) of the MOSFET? [5%]
 - (c) Find the intrinsic gain of the MOSFET. [5%]
 - (d) If the BJT has the same value of V_A , find the intrinsic gain of the BJT operating at a dc current of 0.1I. [5%]
- 3. At higher frequencies, the MOSFET is characterized by its small-signal model by including C_{gs} and C_{gd} .
 - (a) The high-frequency current gain of the MOSFET is typically evaluated by the circuit in Fig. 3. Derive the transfer function of the current gain $T(s) \equiv I_0/I_s$. [5%]
 - (b) Based on T(s), find the unity-gain frequency ω_t by assuming C_{qd} is relatively small. [5%]
 - (c) For fixed DC voltage V_{GS} , how does ω_t change as channel width doubles? Why? [5%]
 - (d) For fixed DC voltage V_{GS} , how does ω_t change as channel length doubles? Why? [5%]

Fig. 3

見背面

國立臺灣大學110學年度碩士班招生考試試題

題號: 405 科目:電子學(C)

題號:405 共 2 頁之第 2 頁 節次: 8

4. For the circuit in Fig. 4, assume the op-amp is ideal and the resistors are given as $R=5~k\Omega$, $R_1=$ $10 \ k\Omega$, and $R_2 = 20 \ k\Omega$.

- (a) Given $I_S = 1 \times 10^{-15} A$ for the diodes, find the output voltage when $v_I = 1 V$. [5%]
- (b) If the diodes are ideal, plot the voltage transfer curve (plot of v_0 versus v_l). Find the output voltage when $v_I = 1 V$. [10%]

Fig. 4

- 5. Assume C_1 and C_2 are ideal coupling capacitors for the circuits in Fig. 5.
 - (a) For the circuit in Fig. 5(a), find the input resistance (R_{in}) , output resistance (R_o) and open-circuit voltage gain (A_{vo}) of the amplifier. [15%]
 - (b) For the circuit in Fig. 5(b), find the bias current I needed to obtain a voltage gain (v_0/v_s) of 15. [10%]

試題隨卷繳回