題號: 40

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 近代物理(含半導體物理)

題號:407

節次: 2

共2頁之第1頁

1. (22 %) For classical particles following Boltzmann's distribution of energy, please answer the following questions:

- (a) **(4 %)** Please show that the molecular energy distribution is $n(E) = \frac{2\pi N}{(\pi k_B T)^{3/2}} \sqrt{E} e^{-E/k_B T}$ with an energy (*E*), where k_B is the Boltzmann constant and *T* is the temperature. Assume the total number of the gas particles is *N* in a volume of *V*.
- (b) (4 %) Please show that the average energy is $\frac{3}{2}k_BT$. Hint: you might need $\int_0^\infty x^{3/2}e^{-ax}dx = \frac{3}{4a^2}\sqrt{\frac{\pi}{a}}$
- (c) **(14 %)** Express the Boltzmann distribution in terms of speed and show that the most probable speed (v) is $\sqrt{\frac{2k_BT}{m}}$, the root-mean square speed $(\sqrt{\overline{v^2}})$ is $\sqrt{\frac{3k_BT}{m}}$, and the average velocity (\overline{v}) is $\sqrt{\frac{8k_BT}{\pi m}}$. Hint: you may need $\int_0^\infty x^3 e^{-ax^2} dx = \frac{1}{2a^2} \text{ and } \int_0^\infty x^4 e^{-ax^2} dx = \frac{3\sqrt{\pi}}{8a^{5/2}}$
- 2. **(30 %)** Consider a finite quantum well in Fig. 1 with the potential energy of $V(x) = \begin{cases} 0 & |x| < a/2 \\ V_0 & |x| > a/2 \end{cases}$ where $V_0 > 0$. Please answer the following questions:
 - (a) (8%) Explain why a wavefunction and its first derivate need to be continuous and finite.
 - (b) (8 %) Now we have the wavefunctions in this quantum well system as follows:

$$\psi(x) = Ae^{kx} + Be^{-kx} \quad \text{if } x > a/2 \text{ and } \psi(x) = Ce^{kx} + De^{-kx} \quad \text{if } x < -a/2, \text{ where } k = \sqrt{\frac{2m}{h^2}}[V_0 - E] \quad (0 < E < V_0).$$

$$\psi(x) = F\sin(lx) + G\cos(lx) \quad \text{if } -a/2 < x < a/2, \text{ where } l = \sqrt{\frac{2mE}{h^2}} \quad (0 < E < V_0).$$

Fig. 1

Please show that

$$(B-C)e^{-\frac{ka}{2}} = 2F\sin\left(\frac{la}{2}\right) \tag{1}$$

$$(B+C)e^{-\frac{ka}{2}} = 2G\cos\left(\frac{la}{2}\right) \tag{2}$$

$$k(B-C)e^{-\frac{ka}{2}} = 2Flcos\left(\frac{la}{2}\right)$$
 (3)

$$k(B+C)e^{-ka/2} = 2Gl\sin\left(\frac{la}{2}\right) \tag{4}$$

見背面

題號: 407 國立臺灣大學 110 學年度碩士班招生考試試題

科目: 近代物理(含半導體物理)

題號:407

節次: 2

共2頁之第2頁

(c) (14%) By dividing Eq. (1) by Eq. (3) and dividing Eq. (2) by Eq. (4), please show that

$$\frac{1}{-k} = \frac{1}{l} \tan\left(\frac{la}{2}\right)$$

$$\frac{1}{k} = \frac{1}{l} \cot\left(\frac{la}{2}\right)$$

$$\tan\left(\frac{x}{2}\right) = \sqrt{\frac{x_0^2 - x^2}{x^2}} = \sqrt{\frac{x_0^2}{x^2} - 1}$$

$$\cot\left(\frac{x}{2}\right) = -\sqrt{\frac{x_0^2 - x^2}{x^2}} = -\sqrt{\frac{x_0^2}{x^2} - 1},$$

where $x \equiv la$, $x_0 \equiv \sqrt{\frac{2m}{\hbar^2}V_0}a$.

Then plot $tan\left(\frac{x}{2}\right)$, $\sqrt{\frac{x_0^2}{x^2}-1}$ $cot\left(\frac{x}{2}\right)$, and $-\sqrt{\frac{x_0^2}{x^2}-1}$ vs. x. Also show that there always exists at least one quantum subband in this finite quantum well.

- 3. **(10 %)** Group-V atoms (e.g. P, As, or Sb) have been doped in Si with an activation energy $E_D=100\,$ meV below the conduction band energy level E_C . The Fermi level (E_F) is measured at an energy of 0.15 eV below E_C at room temperature. Assuming $N_C=2.8\times 10^{19}\,$ cm⁻³, $N_V=1\times 10^{19}\,$ cm⁻³, $n_i=1.5\times 10^{10}\,$ cm⁻³, degeneracy of the ionized impurity is two, please calculate
 - (a) (6 %) concentration of ionized donors N_D⁺
 - (b) (4 %) density of the implanted dopants N_D
- 4. **(18 %)** A metal-semiconductor contact is formed on Si (electron affinity $\chi = 4.05$ eV) with aluminum (work function $\phi_m = 4.1$ eV). The doping concentration of Si is $N_D = 10^{17}$ cm⁻³.
 - (a) (6 %) Please plot the ideal band diagram of the Al-Si M-S junction and mark the Fermi level E_F , the Schottky barrier height Φ_{b0} , and built-in potential barrier Φ_{bi} at equilibrium.
 - (b) (6 %) If a high density of surface states pin the Fermi level at 0.4 eV above the valence band maximum in this M-S junction interface. Please sketch its band diagram.
 - (c) (6 %) Please explain the electron flowing direction (e.g. from metal to Si) upon forming the M-S junction with interface conditions provided from both question (a) and (b).
- 5. **(20 %)** For a conventional planar n-MOSFET, source/drain regions are heavily doped with a concentration of $N_D=10^{19}~{\rm cm}^{-3}$ and the channel has a doping level of $N_A=10^{15}~{\rm cm}^{-3}$. The oxide is 1-nm HfO₂ with a dielectric constant of 32 and the gate is aluminum (work function $\phi_m=4.1~{\rm eV}$). Trapped charges are inside the oxide and adjacent to the oxide/semiconductor interface with a density of $Q_{SS}=5\times10^{13}~{\rm cm}^{-2}$. The gate length is 1 μ m. The dielectric constant of Si is 11.7. $\varepsilon_0=8.854\times10^{-14}~{\rm F/cm}$
 - (a) (5 %) What is the Flat-Band voltage (V_{FB}) of this MOSFET without considering trapped charge effects (i.e. $Q_{SS}=0$)?
 - (b) (5 %) What is the Flat-Band voltage if the trapped charges are considered ($Q_{SS} = 5 \times 10^{13} \, \text{cm}^{-2}$)?
 - (c) (5 %) What is the threshold voltage (V_{th}) of this n-MOSFET?
 - (d) (5 %) If Si substrate is biased under 10 V. Please calculate the ΔV_T .

試題隨卷繳回