題號: 53 國立臺灣大學 110 學年度碩士班招生考試試題

科目:常微分方程

題號: 53

共 / 頁之第 / 頁

節次: 2

Ordinary Differential Equations

1. Set

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \tag{0.1}$$

and $X(t) = (x_1(t), x_2(t))^T$.

- (a) (10 points) Calculate $e^{tA}:=I+\sum_{j=1}^{\infty}\frac{1}{j!}t^jA^j$, where I is the two by two identity matrix.
- (b) (10 points) Solve the differential system

$$\begin{cases} x_1'(t) = x_1(t) + x_2(t) + e^t, \\ x_2'(t) = x_2(t), \end{cases}$$
 (0.2)

with initial condition $X(0) = (2,0)^T$.

2. (20 points) Solve the differential equation

$$x'''(t) + x''(t) - 9x'(t) - 9x(t) = 0,$$

with initial condition x(0) = x'(0) = 0, x''(0) = 1.

3. (20 points) Suppose that f(t) and g(t) are two solutions of the differential equation

$$x'(t) + (5 + \cos t)x(t) = \sin t. \tag{0.3}$$

Show that if f(0) > g(0), then f(t) > g(t) for all t > 0.

4. Consider the differential equation

$$x'(t) + (4 + \sin t)x(t) = \sin t. \tag{0.4}$$

Let $\phi(t)$ be the periodic solution of (0.4).

- (a) (10 points) Find the value of $\phi(3\pi)$.
- (b) (10 points) Let X(t) be any other solution of (0.4). Show that

$$\lim_{t \to \infty} |X(t) - \phi(t)| = 0.$$

5. (20 points) Consider the differential equation

$$x''(t) + \sin x = 0. \tag{0.5}$$

Let f(t) be the solution of (0.5) with initial condition $f(0) = \frac{\pi}{2}$ and f'(0) = 1. Find the maximum value and the minimum value of f(t).