國立臺灣大學99學年度轉學生招生考試試題

題號: 43

題號: 43

科目:普通化學(C)

共 / 頁之第 /

1. (a) The ionization energies of Na, K, Rb, Cs (in no particular order) are 382, 409, 419, 495 kJ/mol. Match the appropriate formula to each ionization energy. Explain. (8%)

- (b) The lattice energies of Na₂S, K₂S, Rb₂S, Cs₂S, CaS, CaSe (in no particular order) are -1850, -1949, -2052, -2203, -2862, -3119 kJ/mol. Match the appropriate formula to each lattice energy. Explain. (10%)
- (c) Cs₂S has the heat of formation -360 kJ/mol. The molar enthalpy of sublimation for S is 277 kJ/mol. The first and second electron affinities of S_(g) are -200 and 532 kJ/mol, respectively. Using the data you choose for the ionization energy of Cs and the lattice energy of Cs₂S in (a) and (b), set up the Born-Haber cycle and calculate the molar enthalpy of sublimation (kJ/mol) for Cs. (10%)
- (d) According to the statement in (c), the first electron affinity for sulfur is exothermic, but the second is endothermic. Give the explanation. (8%)
- 2. (a) Compare the molecular shape, the hybrid orbital on the central atom and the net dipole moment for ClO₃⁻ and ClO₃⁺ (12%)
 - (b) An element X forms the ion XF₃ with a non-zero dipole moment. The atoms of XF₃ are approximately in one plane. Give an example of an element that could be X. Explain how you reached your answer. (10%)
- 3. The cyanate ion (OCN) and the fulminate ion (CNO) have the same chemical formulas but have vastly different properties. Metal salts of one of these ions are commonly used as an explosive.
 - (a) C is the central atom in OCN⁻ and N is the central atom in CNO⁻, draw the Lewis structures for both of them, including reasonable resonance forms. Provide the formal charge for each atom. (8%)
 - (b) Which ion is likely to be explosive? Explain.(6%)
- 4. Given the following equation:

4 NH_{3(g)} + 7 O_{2(g)} \longrightarrow 4 NO_{2(g)} + 6 H₂O_(g) Δ H=-1130 kJ/mol

- (a) For the forward direction, do you think the entropy change of the system (ΔS_{sys}) is positive, zero or negative? How about the entropy change of the surrounding (ΔS_{surr})? Explain your answers. (8%)
- (b) Choose the conditions that will give the optimized yield of NO₂? (A) low pressures and low temperatures (B) high pressures and low temperatures (C) low pressures and high temperatures (D) high pressures and high temperatures. (2%)
- 5. H₃AsO₄ is a weak triprotic acid. The three acid ionization constants are 5.0×10⁻³, 9.3×10⁻⁸, and 3.0×10⁻¹², respectively.
 - (a) If the initial concentration of H₃AsO₄ is 0.100 M, calculate the equilibrium concentrations of H₃AsO₄, H₂AsO₄, HAsO₄²⁻ and H₃O⁺ (10%)
 - (b) Comparing the first acid ionization constant (K_{ai}) of H_3PO_4 and H_3AsO_4 , which has a greater value? Explain your choice. (8%)