題號: 54 科目:線性代數 題號: 54

共 頁之第

百

※注意:請於試卷上「非選擇題作答區」標明題號並依序作答。

Notation: **R** is the set of real numbers. $M_n(\mathbf{R})$ is the set of $n \times n$ matrices with entires in **R** and \mathbf{R}^n is *n*-dimensional column vectors over **R**.

Problem 1 (20 pts). Let $T: \mathbf{R}^4 \to \mathbf{R}^3$ be the linear transformation defined by $T(v) = A \cdot v$, where

$$A = \begin{pmatrix} 1 & -1 & 0 & 3 \\ -1 & 2 & 1 & -1 \\ -1 & 1 & 0 & -3 \end{pmatrix} \in \mathcal{M}_{3\times 4}(\mathbf{R}).$$

- (1) Find the rank and the nullity of T
- (2) Find bases of $\operatorname{Ker} T$ and $\operatorname{Im} T$.

Problem 2 (20 pts). Let

$$A = \begin{pmatrix} -1 & 4 & -2 \\ -2 & 5 & -2 \\ -1 & 2 & 0 \end{pmatrix}.$$

- (1) Find the eigenvalues of A.
- (2) Find an invertible matrix $P \in M_3(\mathbf{R})$ such that $P^{-1}AP$ is a diagonal matrix.

Problem 3 (20 pts). Let $V = M_3(\mathbf{R})$ be the 3-dimensional vector space over \mathbf{R} given by

$$V = \left\{ egin{pmatrix} x_1 & x_2 \ x_3 & -x_1 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbf{R}
ight\}.$$

Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and define the linear transformation $T: V \to V$ by

$$T(B) = ABA^{-1}.$$

(1) Write down the matrix representation A of T under the basis

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

(2) Find an invertible $P \in M_3(\mathbf{R})$ such that $P^{-1}AP$ is the Jordan canonical form.

Problem 4 (20pts). Let $A \in M_n(\mathbf{R})$ such that $A^n = 0$ but $A^{n-1} \neq 0$.

- (1) Show that there exists $v \in \mathbb{R}^n$ such that $\{v, Av, A^2v, \dots, A^{n-1}v\}$ is a basis of \mathbb{R}^n
- (2) If $B \in M_n(\mathbf{R})$ such that AB = BA, prove that

$$B = a_0 + a_1 A + a_2 A^2 + \cdots + a_{n-1} A^{n-1}$$

for some $a_0, \ldots, a_{n-1} \in \mathbf{R}$.

Problem 5 (20 pts). Let $A \in M_n(\mathbf{R})$ be the matrix

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{2n-1} \end{pmatrix}.$$

Show that for any non-zero $x \in \mathbb{R}^n$, $x^t Ax > 0$.

試題隨卷繳回