國立臺灣大學106學年度轉學生招生考試試題

題號: 52

題號: 52

科目: 線性代數

共 頁之第

※ 注意:請於答案卷上依序作答,並應註明作答之部份及其題號。

(1) (20 pts) Find a Jordan form J of the upper triangular matrix

$$\left(\begin{array}{ccc}
2 & 4 & -8 \\
0 & 0 & 4 \\
0 & -1 & 4
\end{array}\right)$$

and find a matrix T such that $T^{-1}AT = J$.

- (2) (20 pts) Let I_n be the n×n identity matrix, v be a n×1 vector and A = I_n+vv^T.
 (i) Show that A is invertible and det(A) = 1 + v^Tv where v^T is the transpose of v.
 - (ii) Find an explicit formula of A^{-1} .
- (3) (20 pts) Let A be an $p \times q$ matrix of rank α and B a $r \times s$ matrix of rank β . Let $M = \{C | C \text{ is a } q \times r \text{ matrix such that } ACB = 0\}$
 - (i) Prove that M is a vector space.
 - (ii) Find the dimension of the vector space M.
- (4) (20 pts) Let V be the vector space of 3×3 real matrices that are skew symmetric, i.e. $A^T=-A$ (where A^T is the transpose of A. Prove the expression

$$\langle A,B\rangle = \frac{1}{2}Tr(AB^T)$$

defines a inner product on V, and exhibit an orthonormal basis of V with respect to this inner product. Here $Tr(AB^T)$ is the trace of AB^T .

- (5) (20 pts) Let V be a vector space over C of dimension n, and let $T: V \mapsto V$ be an invertible linear map such that $T^{-1} = T$.
 - (i) Prove that T is diagonalizable.
 - (ii) Denote by S the vector space of linear transformations from V to V that commute with T. Find a formula for dim(S) in terms of n and the trace of T.

試題隨卷繳回