國立臺灣大學107學年度轉學生招生考試試題

題號: 51 科目:線性代數 超號: 51

共 / 頁之第 /

※ 禁止使用計算機

注意事項:

i. 問題 i. 至 4. 皆假設 over ℝ; 問題 5. over C・

ii. 答題引述任何定理時,必須敍述清楚。

iii. 不得使用計算器或其他 3C 產品。

iv. 請於答題本「非選擇題作答區」標明題號作答。

記號

 \mathbb{R} : real number; \mathbb{C} : complex number; \mathbb{R}^n : n dimensional Euclidean space.

 \mathbf{M}_n : space of $n \times n$ matrices with entries in \mathbb{R} ($\mathbf{M}_n^{\mathbb{C}}$: entries in \mathbb{C}).

 P_n : vector (linear) space of real polynomials of degree less than or equal to n

試題

1. [20%] Fixed $a \in \mathbb{R}$. Define a function $F: \mathbf{P}_n \to \mathbb{R}^{n+1}$ by

$$f(x) \mapsto [f(a) \ f'(a) \ f''(a) \ \cdots \ f^{(n)}(a)]^T.$$

a. Show that F is a linear transformation.

b. What is the condition for F to be a linear isomorphism? Determine the polynomial $F^{-1}([\alpha_0 \ \alpha_1 \ \alpha_2 \ \cdots \ \alpha_n]^T)$ when it is possible.

2. [20%] $A \in M_3$. Suppose u, v, w are linear independent vectors and

$$\begin{cases} A\mathbf{u} = 2\mathbf{v} + 2\mathbf{w} \\ A\mathbf{v} = \mathbf{u} + \mathbf{v} + 2\mathbf{w} \\ A\mathbf{w} = -\mathbf{u} + \mathbf{v} + \mathbf{w} \end{cases}$$

Show that A is diagonalizable and determine the eigenbasis in term of u, v, w.

3. [20%] Determine the Jordan form of A and the corresponding Jordan basis.

$$A = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

- 4. [20%] Show that if $A = [a_{ij}] \in \mathbf{M}_n$ is positive definite, then all diagonal elements a_{ii} are positive and $\max_{1 \le i,j \le n} |a_{ij}|$ is on the diagonal. How about the converse statement?
- 5. [20%] For $A \in \mathbf{M}_n^{\mathbb{C}}$, we assume the fact that if A is normal (i.e. $AA^* = A^*A$, where $A^* = \overline{A}^T$ is the adjoint of A) then A is unitarily diagonalizable. Suppose $\lambda_1, \lambda_2, \dots, \lambda_k$ are eigenvalues of A, where λ_i are distinct. Prove the following statements:
 - a. If A is normal, there are $P_1, P_2, \dots, P_k \in \mathbf{M}_n^{\mathbb{C}}$ such that

$$A = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_k P_k$$

and for any polynomial function f(t),

$$f(A) = f(\lambda_1)P_1 + f(\lambda_2)P_2 + \dots + f(\lambda_k)P_k.$$

b. A is normal if and only if $A^* = p(A)$ for certain polynomial function p(t).

試題隨卷繳回