題號: 17

科目:微積分(A)

凝验: 17

共 [頁之第

※ 注意:請於試卷上「非選擇題作答區」標明題號並依序作答。

1. [20%] Prove L'Hospital's rule in the following case: Suppose f(x), g(x) are differentiable with continuous derivatives f'(x), g'(x) on the interval (-1, 1) such that f(0) = g(0) = 0 and $g'(0) \neq 0$. Then

 $\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)}.$

- 2. (a) [5%] Give an example of differentiable functions $f_n(x)$, $n \ge 0$, on (-1,1) such that $\sum_{n=0}^{\infty} f_n(x)$ converges to a function on (-1,1) which is *not* differentiable. You need to justify your answer.
 - (b) [15%] Suppose the power series $\sum_{n=0}^{\infty} a_n x^n$ converges to a function f(x) on the interval (-1,1). Show that f(x) is differentiable with derivative $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ on (-1,1).
- 3. [20%] Let f(x,y) be a function on \mathbb{R}^2 whose partial derivatives of any order are continuous. Suppose $f_x(0,0) = f_y(0,0) = 0$ and $f_{xx}(0,0) = f_{yy}(0,0) = 2$, $f_{xy}(0,0) = 1$. Prove that there exists $\epsilon > 0$ such that f(x,y) > f(0,0) for all $0 < x^2 + y^2 < \epsilon^2$ (so f(x,y) has a local minimum at (0,0)).
- 4. [20%] Let f(x) be a continuous function on the closed interval [-1,1]. Show that

$$\lim_{n\to\infty}\int_{-1}^1 f(x)\sin nx\,\mathrm{d}x=0.$$

5. [20%] Let T be the surface in \mathbb{R}^3 given by the equation

$$(\sqrt{x^2 + y^2} - 2)^2 + z^2 = 1$$

and \vec{n} the outward unit normal vector. Evaluate the flux integral $\int_T \vec{F} \cdot \vec{n} \, dS$ of the vector field

$$\vec{F}(x, y, z) = (0, 0, |z|).$$

(Here dS denotes the element of surface.)

試題隨卷繳回