題號: 32

科目:社會統計

題號: 32

共 5 頁之第 1 頁

一、單選題 (每題 3 分) ※ 注意:請於試卷上「選擇題作答區」依序作答。

- 1. Suppose you are told that P(A) = 0.4, P(B) = 0.3, and $P(A \cap B) = 0$. It follows that A and B are:
- (A.) Independent but not mutually exclusive.
- (B.) Mutually exclusive but not independent.
- (C.) Neither mutually exclusive nor independent.
- (D.) Both mutually exclusive and independent.
- 2. If two events are not mutually exclusive, then the probability that at least one of the events will occur equals:
- (A.) The sum of the probabilities that each will occur.
- (B.) The sum of the probabilities that each will occur minus the probability that both will occur jointly.
- (C.) The product of the probabilities that each will occur.
- (D.) The difference between the probabilities of the two events.
- 3. Suppose that A and B are independent events, with P(A) =0.2 and P(B)=0.7. What is the probability that neither A nor B will occur?
- (A.) 0.14
- (B.) 0.24
- (C.) 0.90
- (D.) None of the above
- 4. Which of the parameters associated with a binomial experiment will produce a probability distribution with the smallest standard deviation, given that the sample size n is the same for each situation?
- (A.) p = 0.5
- (B.) p = 0.4
- (C.) p = 0.3
- (D.) q = 0.8
- (E.) q = 0.1
- 5. Suppose P(A)=0.2 and P(B)=0.5. If P(A|B)=0.4, then
- (A.) A and B are mutually exclusive
- (B.) $P(A \cap B) = P(A)$
- (C.) $P(A \cap B) = 0.2$
- (D.) A and B are independent.
- (E.) None of the above
- 6. Which of the following does NOT characterize the setting of a binomial random variable?
 - (A.) The experiment consists of two identical trials.
 - (B.) The trials are independent
 - (C.) Each trial has two possible outcomes
 - (D.) The chance of "success" on each trial is the same.

題號: 32 科目:社會統計

題號: 32

共 5 頁之第 2 頁

- 7. Suppose that 25% of all subscribers to a nationally circulated business magazine earn an income in excess of \$40,000. The magazine polls 20 subscribers at random to determine the income category into which each falls. What is the probability that none of the 20 subscribers earn more than \$40,000?
 - (A.) 0.0032
 - (B.) 0.20
 - (C.) 0.5
 - (D.) 0.05
 - (E.) 0.25
- 8. The binomial distribution approaches the normal curve in shape when
 - (A.) n increases and p approaches 1.
 - (B.) n decreases and p approaches 0.
 - (C.) n increases and p moves away from .5
 - (D.) n decreases and p approaches .5
 - (E.) n increases and p moves toward .5
- 9. Which of the following statements is true?
- (A.) all parameters have sampling distributions
- (B.) a parameter is a function of sample outcomes
- (C.) Chance will cause a statistic to vary from sample to sample
- (D.) the standard error of the mean will exceed the standard deviation of the population from which the samples are drawn.
- (E.) the sampling distribution of the mean has precisely the same scatter as the parent population from which the samples were drawn.
- 10. Suppose that statistics T is an unbiased estimator of $\,\theta\,$ and a sample of size n is used to compute T. Which of the following is NECESSARILY true?
- (A.) the variances of the sampling distribution of T is σ/\sqrt{n}
- (B.) T=θ
- (C.) $E(\theta) = T$
- (D.) $E(T)=\theta$
- (E.) variance (T) < variance (θ)
- 11. If a researcher is using a 95% level of confidence in calculating a confidence interval,
 - (A.) 95% of the time the computed interval will include the sample means.
 - (B.) 5% of the time such interval will not include the population value.
 - (C.) in the long run, 95% of all sample means will fall within the interval.
 - (D.) 95% of the time the interval will not include the population value.
- 12. For a given level of confidence, if the sample size is decreased,
 - (A.) the probability that the interval will not include the parameter increases.
 - (B.) the difference between the upper limit of the interval and the lower limit of the interval remains the same
 - (C.) the difference between the upper limit of the interval and the lower limit of the interval increases.
 - (D.) the different between the upper limit of the interval and the lower limit of the interval decrease.

題號: 32 科目:社會統計 題號: 32

共 5 頁之第 3 頁

13. Which of the following statements is true about confidence intervals for a fixed sample of size n?

(A.) if the population standard deviation is known, all 95% confidence intervals will have the same width.

(B.) if the population standard deviation is known, all 95% confidence intervals will have the same midpoint and the same width.

(C.) if the population standard deviation is not known, all 95% confidence intervals will have the same midpoint but different p widths.

(D.) if the population standard deviation is not known, all 95% confidence intervals will have different midpoint but equal width.

- 14. The parameters(s) for the t-distribution is (are)
 - (A.) μ and σ
 - (B.) variance
 - (C.) degree of freedom
 - (D.) χ^2
- 15. In hypothesis testing, α can be set as low as desired
 - (A.) by increasing the sample size.
 - (B.) without having any effect on β .
 - (C.) only in very special situations, because most of the time researchers are limited in choice by the nature of the problem.
 - (D.) but at the expenses of increasing risk of a Type II error as α is decreased.
- 16. the relationship between α and β is that
 - (A.) if n remains the same, as α is increased, β decreases.
 - (B.) if n remains the same, as α is increased, β increases.
 - (C.) if α is held constant but n is increased, β will increase.
 - (D.) if β is held constant but n is increased, α will remain the same.
- 17. in the case of p-values and their usage,
 - (A.) the larger the p-value, the heavier is the weight of the sample evidence for rejecting the null hypothesis.
 - (B.) the smaller the p-value, the heavier is the weight of the sample evidence for rejecting the null hypothesis.
 - (C.) proper analysis requires the specification of α prior to collection of the information
 - (D.) proper analysis requires the specification of α and β prior to the collection of the sample information.
- 18. One of the properties of the chi-square distribution:
- (A.) a chi-square distribution has both negative and positive values
- (B.) chi-square distribution are symmetrical
- (C.) chi-square values are normally distributed
- (D.) there are many chi-square distributions, one for each number of degree of freedom.

題號: 32

科目:社會統計

題號: 32

共 5 頁之第 4 頁

19, the inferences for σ and σ^2 are based on the assumption that

- (A.) the underlying population from which the sample measurements are drawn is normal.
- (B.) the underlying population sampled is t-distributed.
- (C.) the underlying population sampled is F-distributed.
- (D.) the underlying population sampled is chi-square distributed.
- 20. if \bar{x}_1 and \bar{x}_2 are independent normally distributed random variables, then the distribution
 - (A.) $\bar{x}_1 \bar{x}_2$ will be t-distributed.
 - (B.) $\bar{x_1}$ - $\bar{x_2}$ will be normally distributed.
 - (C.) $x_1 x_2$ will be normally distributed.
 - (D.) $x_1 x_2$ will be t-distributed.
- 21. in a test of independence for a contingency table, if the chi-square value falls in the critical region,
 - (A.) the null hypothesis of independence should be accepted.
 - (B.) the calculated chi-square value must be less than the chi-square value associated with the Type I error.
 - (C.) the calculated chi-square value must be close to 0.
 - (D.) the null hypothesis of independence is rejected.
- 22. the degree of freedom associated with a contingency table possessing r rows and c columns will always equal
 - (A.) the product of $r \times c$.
 - (B.) the product of $(r-1)\times(c-1)$.
 - (C.) the sum of r+c.
 - (D.) the product of r X c less the sum of r+c.
- 23. See the ANOVA table shown below. What is the total number of observations?
 - (A.) 7
 - (B.) 9
 - (C.) 11
 - (D.) 13
 - (E.) none of the above

(12.) 110110	OI MIC MCC. C					
Source	df	SS	MS	F		
Treatment	2	?	?	2		
Error	?	?	25			
Total	?	325				

- 24. There are three basic assumptions for the F-test in ANOVA to be valid, and those assumptions are:
 - (A.) normality, large sample sizes, and equal group variances.
 - (B.) normality, independence, and equal variance.
 - (C.) large sample sizes, normality, and equal variances.
 - (D.) equal variance, large sample sizes, and independence.

題號: 32 科目:社會統計 題號: 32

共 丁頁之第 〕 頁

25. which of the following is NOT one of the assumptions for regression analysis:

- (A.) the relationship between X and Y is linear
- (B.) $E(e_i)=0$
- (C.) zero conditional mean: $E(e_i|x_i)=0$
- (D.) homoscedasticity: $var(ei) = \sigma^2$
- (E.) $E(e_i x_i) > 0$

二、簡答題(共25分)※ 注意: 請於試卷上「非選擇題作答區」標明題號並依序作答。 某社會學家想瞭解為什麼職業聲望有高有低(從最低0分到最高78分),他利 用社會變遷調查資料進行職業聲望的迴歸分析,得到以下的結果,請協助他解 釋這個分析的結果。

c	lf	MS	Number of obs		=	7,496
		· · · · · · · · · · · · · · · · · · ·		•	=	126.31
1	7 3	3912.63	Prob	> F	=	0.0000
2 7,48	88 268	.491002	R-squ	ared	=	0.1056
			Adj R	-squared	=	0.1048
3 7,49	5 299	.913146	Root	MSE	=	16.386
迴歸係數	S.E.	t-value	sig.	95% confid	lence in	terval
-7.60	0.38	-20.05	0.00	-8.34		-6.86
0.78	0.07	10.56	0.00	0.63		0.92
-0.01	0.00	-11.30	0.00	-0.01		-0.01
)						
1.60	0.57	2.80	0.01	0.48		2.73
4.49	0.64	6.96	0.00	3.23		5.75
-1.56	1.54	-1.01	0.31	-4.57		1.46
0.33	0.02	16.40	0.00	0.29		0.37
18.94	1.69	11.18	0.00	15.62		22.26
	1 7,48 3 7,49 迴歸係數 -7.60 0.78 -0.01) 1.60 4.49 -1.56 0.33	2 7,488 268 3 7,495 299 適歸係數 S.E. -7.60 0.38 0.78 0.07 -0.01 0.00) 1.60 0.57 4.49 0.64 -1.56 1.54 0.33 0.02	1 7 33912.63 2 7,488 268.491002 3 7,495 299.913146 週歸係數 S.E. t-value -7.60 0.38 -20.05 0.78 0.07 10.56 -0.01 0.00 -11.30) 1.60 0.57 2.80 4.49 0.64 6.96 -1.56 1.54 -1.01 0.33 0.02 16.40	F (7, 1 7 33912.63 Prob 2 7,488 268.491002 R-squ Adj R 3 7,495 299.913146 Root	F(7, 7488) 1 7 33912.63 Prob > F 2 7,488 268.491002 R-squared Adj R-squared Adj R-squared Root MSE SE t-value sig. 95% confidence -7.60 0.38 -20.05 0.00 -8.34 0.78 0.07 10.56 0.00 0.63 -0.01 0.00 -11.30 0.00 -0.01) 1.60 0.57 2.80 0.01 0.48 4.49 0.64 6.96 0.00 3.23 -1.56 1.54 -1.01 0.31 -4.57 0.33 0.02 16.40 0.00 0.29	1 7 33912.63 Prob > F = 2 7,488 268.491002 R-squared = 3 7,495 299.913146 Root MSE = 運締係數 S.E. t-value sig. 95% confidence in -7.60 0.38 -20.05 0.00 -8.34 0.78 0.07 10.56 0.00 0.63 -0.01 0.00 -11.30 0.00 -0.01 1.60 0.57 2.80 0.01 0.48 4.49 0.64 6.96 0.00 3.23 -1.56 1.54 -1.01 0.31 -4.57 0.33 0.02 16.40 0.00 0.29

- (1) 請問這個迴歸分析總共用了多少樣本?(1分)
- (2) 請解釋 R-squared 的意義。(3分)
- (3) 請問你從 ANOVA table 可以得到什麼結論? (3分)
- (4) 請問迴歸模型中的第一個自變項的 t-value=-20.05 是在檢驗什麼假設?(3分)
- (5) 請解讀年齡如何影響職業聲望分數?(3分)
- (6) 研究者以三個虛擬變數來分析族群對於職業聲望的影響,請解釋"本省客家人"的迴歸係數所代表的意義。(3分)
- (7) 請問迴歸模型的常數項代表什麼意義?(3分)
- (8) 請問教育年數的 95% confidence interval 告訴我們什麼?(3分)
- (9) 請問原住民的迴歸係數-1.56 代表什麼意義? (3分)

試題隨卷繳回